
�

�Kenny Wong

view

frames

Abstract

1 Introduction

Managing Views in a
Program Understanding Tool

This work was supported in part by the Nat-
ural Sciences and Engineering Research Council of
Canada.

Program understanding tools typically of-
fer built-in visual representations of the
subject software, such as call graphs and
class hierarchies, and textual representa-
tions, such as cross-reference listings and
exact-interface reports. It is useful to bun-
dle a number of these visual and tex-
tual frames, with some annotation, into a

for redocumentation purposes. For
large, legacy software systems, however,
the abundance of created views can be a
major problem. This paper investigates a
number of methods for improving the or-
ganization of these views for improved us-
ability and scalability.

Many software systems have internal docu-
mentation that is often out-of-date and thus
unreliable. Even when the documentation
exists, it may be dispersed in several places
and may not be well structured. Yet accu-
rate, complete, well-organized, and main-
tainable documentation is critical for soft-
ware maintenance. As such, a program-
mer often falls back on the source code
to understand how the software works,

spending much time and perhaps dupli-
cating the efforts of others. This problem
becomes more critical when maintaining
large, legacy software systems. Thus, there
is a need for “redocumentation” [5].

Reverse engineering is one way of redocu-
menting an existing software system. This
process identifies software building blocks,
extracts structural dependencies, produces
higher-level abstractions, and presents per-
tinent summaries for maintenance and re-
engineering (program understanding) pur-
poses. These summaries may be presented
in visual or textual that are derived
from information in a centralized reposi-
tory. A visual frame might contain, for
example, a high-level overview of the sys-
tem, a function call graph, an inheritance
hierarchy, or a control/data flow chart. A
textual frame might contain, for example,
software-metric results, a cross-reference
listing, or an exact-interface report between
two modules. A frame displayed in a win-
dow need not be static, but can be fully
interactive. For example, one can adjust
a module interconnection graph in a vi-
sual frame by grouping, arranging, filter-
ing, scaling, clustering, and editing opera-
tions [13]. One can select a function listed
in a text frame and link to additional doc-
umentation that describes the function in
more detail [12]. This auxiliary documen-
tation might be external to the repository.
Moreover, the frames might be derived



2 Organization

2.1 Subviews

2.2 Sequenceable views

view

global
local

subview

path

sequenceable view

from many different tools.

Pictorial, animation, audio, and video
frames can serve as annotation. Frames
can be bundled and saved into a
for redocumentation purposes [13]. The
usability of views requires that the con-
stituent frames have a well-defined “pro-
cedural” representation and be dynami-
cally updated. The procedural represen-
tation provides a parameterized script or
specification for regenerating or retriev-
ing the frame. The script also allows the
more flexible possibility of adjusting, filter-
ing, or even modifying the contents of a
frame prior to presentation. Dynamically-
updated frames refresh themselves to accu-
rately portray the appropriate subset of the
repository (or auxiliary documentation) at
all times. Thus, unlike traditional software
documentation, a view remains consistent
and up-to-date.

These views can be organized into
views for the workgroup and views for
the individual user. Moreover, the relevant
views can be assembled and targeted for
different classes of users (designers, pro-
grammers, and managers), different levels
of experience (beginners versus experts),
and different kinds of purposes (guided
tours, overviews, and details). This im-
proves program understanding and eases
decision-making by programmers and es-
pecially managers [13]. Thus, views are
a high-level abstraction for incorporat-
ing more application and domain-specific
types of knowledge.

Further structuring mechanisms are neces-
sary to manage the large number of created
views that is needed to document a large

software system.

Views can be enhanced to contain a pointer
to other views, forming a relation-
ship between views and building a multi-
ple inheritance/specialization hierarchy of
views. This idea allows views to be tailored
or specialized for different interpretations
more easily and to share effort in their con-
struction in a way similar to object-oriented
programming. A manager may want the
same high-level overview as a program-
mer, but with additional annotation frames
to present, for example, personnel assign-
ments, funding levels, and scheduling in-
formation. The regeneration of a view be-
comes recursive; changing a view updates
the views to which it is a subview.

Views can already “contain” other views
by merely including the constituent frames
of the other views. However, this aggre-
gation approach, while simple, seems less
suitable and less flexible than the inheri-
tance approach, because of the lack of an
explicit structure.

Analogous to hypertext/hypermedia, links
can be used to associate arbitrary views
(and frames), forming a web of views.
However, for a large enough number of
views, there are significant problems with
user disorientation during navigation and
cognitive overhead for managing the links
[4]. One solution to these problems is to use
the concept of a , an ordered traver-
sal of some links in the web [15]. The
notion of a unifies sub-
views and sequential paths. The top-level



v

w

u

v w

u

a b

c
c

ca

b

3 Presentation

templates

canvas

2.3 Template views

3.1 Inclusion graphs

3.2 Canvases

views and frames of a sequenceable view
are linearly ordered and played back one at
a time. When encountering a sequenceable
view during the playback, the user can be
given the choice to skip past it or to “dive”
into it. This capability provides a simple
roaming and zooming mechanism as well
as a branching technique. Note that there
could be a mix of unordered and sequence-
able views in the hierarchy.

To maintain consistency and completeness
between different sets of views, possibly
for differing software versions and vari-
ants, there is a need for standardized sets
of views. The notion of [6, 10]
or frameworks for standardizing software
documentation and hypertext structures
can be applied to views. Another benefit
is that template views promote reusability.

A parameterized script representation for
frames is needed. Template views are in-
stantiated into real views by binding the
parameters of the constituent frames ap-
propriately.

There are two issues: presenting the struc-
ture of the view documentation and pre-
senting the frames of the views themselves.
This section mainly focuses on the first is-
sue.

To enhance understanding and promote
insight, visual representations of software
are generally desirable [2]. Thus, a visual

method for presenting the structure of a
set of views is needed. One promising ap-
proach is to use inclusion graphs where
views and frames are represented by la-
belled boxes (rectangles) and the subview
relationship is represented by the recur-
sive nesting of boxes (see Figure 1). The
chief advantage of this “space-filling” ap-
proach to visualizing and browsing hier-
archical structures, versus a tree or graph
drawing, is the efficient use of display area
[9]. This technique has been used for vi-
sualizing designs, where smooth naviga-
tion among drastically different levels of
abstraction is required [7]. With some en-
hancements for position, size, color, and
font cues, the technique has also been used
for visualizing very large knowledge struc-
tures in a “virtual museum metaphor” [14].

Figure 1: Inclusion Graphs

The inclusion graph, up to some depth,
can be rendered in a single window on
the screen. The window or becomes
the working area and focus of related view
construction, editing, and navigation activ-
ities. Multiple canvases are possible; each
could capture a different set of environ-
mental and configuration possibilities of
the subject software. To symbolize a frame



frame f
a

b
d

e

canvas c

frame f
a

b
d

e

canvas c

frame f
a

b
d

e

canvas c

f

4 Summary

metaview

metacanvas

3.3 Metaviews

3.4 Layout

by a new box (or miniature [11]) in a canvas,
one might drag an indicator from the frame
and drop it onto an appropriate spot on the
canvas, perhaps in the box of an existing
view (see Figure 2). Views begin as empty
boxes and can be edited by dragging and
dropping the boxes of frames and views in-
side each other. Boxes can be “opened” to
generate, playback, and present their con-
tents (frames and/or views). Boxes can be
“raised” to allow deeper structures to be
rendered and “folded” to mask their struc-
ture.

Figure 2: Adding a Frame to a View

It is instructive to think of a canvas as sim-
ply another kind of frame that provides a

high-level “map” for a number of views.
Bundling one or more of these canvas
frames into a view forms a ; sym-
bolizing one or more of these metaviews on
a canvas forms a . The number
of levels of abstraction is unlimited. This
allows the organization of views to be scal-
able, a necessity for understanding large
software systems. One could, for exam-
ple, use a metacanvas to design a map that
shows the different sets of view documents
for different releases of the software (ac-
cording to different baselines of the reposi-
tory). This is useful to separate and manage
the program understanding analyses.

Since each frame is typically displayed in
a window, it becomes tedious and, eventu-
ally, unmanageable to lay out the frames of
a view by hand. This becomes critical for
a large number of changing views. Thus,
automatic and adaptive layout is an im-
portant requirement that needs further re-
search [3].

This paper investigates and proposes var-
ious ways to improve views. For large
software systems that require many views
to fully document them, some kind of or-
ganization scheme is needed. Subviews,
sequenceable views, and metaviews help
to structure the view documentation with
unlimited levels of abstraction. Template
views promote reuse and allow for con-
sistent, standardized views. Canvases
present a compact, visual representation of
the organization of views.



kenw@sanjuan.uvic.ca

About the author

References

Proceedings of the
ACM Conference on Human Factors in
Computing Systems

Proceedings of
the ACM Conference on Human Fac-
tors in Computing Systems

IEEE Computer

Proceedings of
the Conference on Software Maintenance

IEEE Software

Hypertext ’89 Proceedings

Behaviour & Information
Technology

SIGDOC ’91: Proceedings
of the 9th Annual International Confer-
ence on Systems Documentation

SIGDOC
’92: Proceedings of the 10th Annual In-
ternational Conference on Systems Doc-
umentation

Kenny Wong is a PhD student in the De-
partment of Computer Science at the Uni-
versity of Victoria. His research interests
include program understanding, user in-
terfaces, and software design. He is a
member of the ACM, USENIX, and the
Planetary Society. His internet address is

.

[1] Penny Bauersfeld, John Bennett, and
Gene Lynch, editors.

, Monterey, Califor-
nia, May 1992. ACM Press.

[2] Heinz-Dieter Böcker, Gerhard Fischer,
and Helga Nieper. The enhancement
of understanding through visual rep-
resentations. In Marilyn Mantei and
Peter Orbeton, editors,

, pages 44–
50, Boston, Massachusetts, April 1986.
ACM Press.

[3] Grace Colby. Maintaining legibility,
structure, and style of information lay-
out in dynamic display environments.
CHI’92 Posters and Short Talks, May
1992.

[4] J. Conklin. Hypertext: An intro-
duction and survey. ,
20(9):17–41, September 1987.

[5] Nigel T. Fletton and M. Munro. Re-
documenting software systems using
hypertext technology. In

,
pages 54–59. IEEE Computer Society
Press, 1988.

[6] Pankaj K. Garg and Walt Scacchi. A
hypertext system to manage software
life-cycle documents. ,
pages 90–98, May 1990.

[7] Raymonde Guindon. Requirements
and design of designvision, an object-
oriented graphical interface to an in-
telligent software design assistant. In
Bauersfeld et al. [1], pages 499–506.

[8] , Pittsburgh,
Pennsylvania, November 1989. ACM
Press.

[9] Brian Johnson. TreeViz: Treemap
visualization of hierarchically struc-
tured information. In Bauersfeld et al.
[1], pages 369–370.

[10] Daniel S. Jordan, Daniel M. Russell,
Anne-Marie S. Jensen, and Russell A.
Rogers. Facilitating the development
of representations in hypertext with
IDE. In HYPERTEXT89 [8], pages 93–
104.

[11] Jakob Nielsen. Miniatures versus
icons as a visual cache for videotex
browsing.

, 9(6):441–449, November-
December 1990.

[12] Scott R. Tilley and Hausi A. Müller.
INFO: A simple document annotation
facility. In

, pages
30–36, Chicago, Illinois, October 1991.
ACM Press.

[13] Scott R. Tilley, Hausi A. Müller, and
Mehmet A. Orgun. Documenting soft-
ware systems with views. In

, pages 211–219, Ottawa,



Ontario, Canada, October 1992. ACM
Press.

[14] Michael Travers. A visual representa-
tion for knowledge structures. In HY-
PERTEXT89 [8], pages 147–158.

[15] Polle T. Zellweger. Scripted docu-
ments: A hypermedia path mecha-
nism. In HYPERTEXT89 [8], pages 1–
14.


