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Abstract

The scope of software visualization tools which exist for
the navigation, analysis and presentation of software infor-
mation varies widely. One class of tools, which we refer to as
software exploration tools, provide graphical representa-
tions of software structures linked to textual views of the pro-
gram source code and documentation. This paper describes
a hierarchy of cognitive issues which should be considered
during the design of a software exploration tool. The hier-
archy of cognitive design elements is derived through the ex-
amination of program comprehension cognitive models. Ex-
amples of how existing tools address each of these issues are
provided.

1 Introduction

It is widely accepted that time spent understanding exist-
ing programs is a significant proportion of the time required
to maintain, debug and reuse existing code. The motivation
to understand existing programs is obvious; how to design a
tool to help the comprehension process is not so obvious.

Many researchers have studied how programmers under-
stand programs through observation and experimentation.
This research has resulted in the development of several cog-
nitive theories to describe the comprehension process. Al-
though the cognitive theories differ in style and content, they
share many elements and concepts which outline key activ-
ities in program understanding.

Our long term goal is to design software exploration
tools which combine graphical representations of software
structures linked to textual representations of source code
and documentation as an aid in program comprehension.
Software visualizations are similar in style to hypermedia
documents. A hypermedia document contains related and
linked representations of an information space [1]. Many of
the difficulties experienced by a hyperdocument reader are

the same difficulties as those experienced by the browser of
a software visualization.

In this paper, we develop a hierarchy of cognitive design
elements to be considered when designing software explo-
ration tools. The first branch of this hierarchy addresses is-
sues identified through examination of the cognitive theories
of program comprehension and the second branch addresses
issues which may reduce a maintainer’s cognitive overhead
when browsing and navigating large software structures and
documentation.

The remainder of this paper is organized as follows.
Section 2 describes several cognitive theories of program
comprehension. Section 3 describes the various classes of
tools which may aid in program comprehension. Section
4 describes a hierarchy of cognitive design elements which
should be considered when designing a software exploration
tool. Examples of how existing software visualization tools
address these issues are given. Section 5 discusses how the
hierarchy of design elements may be applied to the design
and evaluation of software exploration tools. Section 6 con-
cludes the paper.

2 Cognitive Models of Program Comprehen-
sion

A mental model describes a maintainer’s mental rep-
resentation of the program to be understood. A cognitive
model describes the cognitive processes and information
structures used to form the mental model. Over the past
20 years, researchers have proposed many cognitive mod-
els to describe how programmers comprehend code during
software maintenance and evolution. All of these cognitive
models use existing knowledge together with the code and
documentation to create a mental representation of the pro-
gram [2].

1



2.1 Bottom-Up Program Comprehension

Bottom-up theories of comprehension propose that un-
derstanding is built from the bottom up, by reading source
code and then mentally chunking or grouping these state-
ments into higher level abstractions. These abstractions are
aggregated further until a high level understanding of the
program is attained [3].

Shneiderman and Mayer’s cognitive framework differ-
entiates between syntactic and semantic knowledge of pro-
grams [4]. Syntactic knowledge is language dependent and
concerns the statements and basic units in a program. Se-
mantic knowledge is language independent and is built in
progressive layers until a mental model is formed which de-
scribes the application domain. The final mental model is
acquired through the chunking and aggregation of other se-
mantic components and syntactic fragments of text.

Pennington’s model [5] also has a bottom-up flavour.
She investigated the role of programming knowledge and
the nature of mental representations in program comprehen-
sion. She observed that programmers first develop a control-
flow abstraction of the program which captures the sequence
of operations in the program. This model is referred to as
the program model and is developed through the chunking
of microstructures in the text (statements, control constructs
and relationships) into macrostructures (text structure ab-
stractions or chunks) and by cross-referencing these struc-
tures. Once the program model has been fully assimilated,
the situation model is developed. The situation model en-
compasses knowledge about data-flow abstractions (changes
in the meaning or values of program objects) and functional
abstractions (the program goal hierarchy). The development
of the situation model requires knowledge of the application
domain and is also built from the bottom-up.

2.2 Top-Down Program Comprehension

Brooks [6] theorizes that programmers understand a
completed program in a top-down manner where the com-
prehension process is one of reconstructing knowledge about
the domain of the program and mapping that to the actual
code itself. The process starts with a hypothesis concerning
the global nature of the program. The initial hypothesis is
refined in a hierarchical fashion by forming subsidiary hy-
potheses. The verification (or rejection) of hypotheses de-
pends heavily on the absence or presence of beacons [6]. A
beacon is a set of features that indicates the existence of hy-
pothesized structures or operations. An example of a beacon
may be a function called swap in a sorting program. The
discovery of a beacon permits code features to be bound to
hypotheses.

Soloway and Ehrlich [7] also observed that top-down un-
derstanding is used when the code or type of code is familiar.

Expert programmers use two types of programming knowl-
edge during program comprehension [7]:

� Programming plans are generic fragments of code that
represent typical scenarios in programming. For exam-
ple, a sorting program will contain a loop which com-
pares two numbers in each iteration.

� Rules of programming discourse capture the conven-
tions of programming, such as coding standards and al-
gorithm implementations.

According to Soloway and Ehrlich’s observations, a
mental model is built top-down by forming a hierarchy of
goals and programming plans. Rules of discourse and bea-
cons help decompose goals and plans into lower level plans.

2.3 Knowledge-based Understanding Model

Letovsky [8] views programmers as opportunistic pro-
cessors capable of exploiting either bottom-up or top-down
cues. There are three components to his model:

� The knowledge base encodes the programmer’s exper-
tise and background knowledge. The programmer’s in-
ternal knowledge may consist of application and pro-
gramming domain knowledge, program goals, a library
of programming plans and rules of discourse.

� The mental model encodes the programmer’s current
understanding of the program. Initially the mental
model consists of a specification of the program goals.
It later evolves into a mental model which describes the
implementation in terms of the data structures and algo-
rithms used. Finally the mental model includes a map-
ping from the specified program goals to the relevant
parts of the implementation.

� The assimilation process describes how the mental
model evolves using the programmer’s knowledge base
and program source code and documentation. The as-
similation process may be a bottom-up or top-down
process depending on the programmer’s initial knowl-
edge base. Inquiry episodes are the central activity in
the assimilation process. Inquiry episodes consist of a
programmer asking a question (for example, what is the
purpose of variable x), conjecturing an answer (x stores
the maximum of a set of numbers), and then searching
through the code and documentation to verify the an-
swer (the conjecture might be verified if x is in an as-
signment statement where two values are compared to
see which is greater).
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2.4 Systematic and As-Needed Program Under-
standing Strategies

Littman et al. [9] observed that either programmers
systematically read the code in detail, tracing through the
control-flow and data-flow abstractions in the program to
gain a global understanding of the program, or they take
an as-needed approach, focusing only on the code related
to a particular task at hand. Soloway et al. [10] describe
a model which merges the concepts of systematic strate-
gies, as-needed strategies and inquiry episodes (as defined
by Letovsky) into a single model:

� Micro-strategies include inquiry episodes which con-
sist of a read, question, conjecture and search cycle.
Such episodes occur as a result of delocalized plans. A
delocalized plan is conceptually related code located in
non-contiguous parts of the program.

� Macro-strategies are used to achieve an understanding
at a more global level. There are two macro-strategies:

– Systematic macro-strategies: The programmer
traces the flow of the entire program by reading
all of the code and documentation, and perform-
ing simulations as they read. This strategy leads
to more correct enhancements because causal in-
teractions in the delocalized plans are discovered.
However, it is unrealistic to systematically read
all of the code for larger programs.

– As-needed macro-strategies: The programmer
studies only parts of the code that they think are
relevant to the task at hand. More errors are made
using this approach since causal interactions are
often overlooked. However it is the most com-
monly used strategy.

2.5 An Integrated Metamodel of Program Com-
prehension

Von Mayrhauser and Vans’ [2] metamodel integrates
Soloway’s top-down model with Pennington’s program and
situation models. From their experiments they observed
some programmers frequently switching between all three
comprehension models [2]. The Integrated Metamodel con-
sists of four major components. The first three components
describe the comprehension processes used to create men-
tal representations at various levels of abstractions and the
fourth component describes the knowledge base needed to
perform a comprehension process:

� The top-down (domain) model is usually invoked when
the programming language or code is familiar. It incor-
porates domain knowledge which describes program

functionality as a starting point for formulating hy-
potheses. The top down model is usually developed us-
ing an opportunistic or as-needed strategy.

� The program model may be invoked when the code
and application is completely unfamiliar. The program
model is a control flow abstraction, and may be devel-
oped as an initial mental representation.

� The situation model describes data-flow and functional
abstractions in the program. Pennington assumes that
the situation model is developed only after the program
model has been formed. Von Mayrhauser and Vans
feel that this is unrealistic for larger programs [11]. In
the integrated model, a situation model may be devel-
oped after a partial program model has been formed
using systematic or opportunistic understanding strate-
gies [12].

� The knowledge base consists of the information needed
to build these three cognitive models. It refers to initial
knowledge that the programmer has before the mainte-
nance task and is used to store new and inferred knowl-
edge.

Understanding is built at several levels of abstraction si-
multaneously by switching between the three comprehen-
sion processes [12]. According to this model any of the three
comprehension processes may be activated at any time [2].
This differs from Letovsky’s model which states that com-
prehension occurs either top-down or bottom-up depending
on the cues available.

2.6 Explaining the Variation in Program Compre-
hension Models

Although there are disparities in the comprehension
models, these are due to the varied characteristics of the
maintainer, program to be understood and the goal for com-
prehending the program. To understand how programmers
understand programs, the factors that can affect the compre-
hension process must be considered.

Most researchers acknowledge that certain factors will
influence the comprehension strategy adopted by a program-
mer. Vessey [13] states that we must control the factors
which influence programmer performance. He specifically
mentions program layout, language design, programming
mode and programming support facilities. Brooks [6] no-
ticed behavioral differences due to the problem domain, dif-
ferences in program text, individual differences and the pur-
pose for understanding the program. Von Mayrhauser and
Vans [14] discriminate between the different strategies re-
quired for programs of varying sizes and different tasks.
Tilley et al. [15] describe how the experience and creativity
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Table 1: Influences on Program Comprehension Strategies

Maintainer Characteristics Program Characteristics Task Characteristics
application domain knowledge application domain task type
programming domain knowledge programming domain task size and complexity
maintainer expertise, creativity program size, complexity, quality time constraints
familiarity with program documentation availability environmental factors
CASE tool expertise CASE tool availability

of the maintainer will have an effect, as well as the quality,
size and complexity of the program to be understood.

Table 1 summarizes the various factors which influence
the comprehension process. These factors are due to dif-
ferences among maintainers; differences in the program to
be comprehended; and task differences. The comprehen-
sion models should, and many do, describe their model in
the context of these characteristics. Many researchers strive
to limit factors which could influence their experiments, but
with the affect that their results are then dependent on the
controlled factors. Even if these characteristics could be
controlled in a laboratory to perform an experiment, in the
real-world these factors cannot be tampered with. If a tool
is to aid in comprehension, it must help a maintainer in the
key activities identified by the cognition model which bests
suits the given characteristics of the maintainer, program and
task. However, it is unlikely that a single tool will be able to
assist in all activities which are representative of the various
cognition models. The next subsection briefly discusses how
a wide variety of tools are used to support program compre-
hension.

3 Program Comprehension Tools

Understanding programs is often difficult because the
source code may be the only source of information. Reverse
engineering describes the extraction of high-level design in-
formation from source code. It is part of the maintenance
process that helps a maintainer understand a program so that
the program may be altered in some way.

Reverse engineering is done to identify a system’s com-
ponents and their inter-relationships and creates representa-
tions of the system in another form, usually at a higher level
of abstraction [16]. These higher levels of abstraction are
generally less implementation-dependent and more applica-
tion dependent. Often this information is presented graphi-
cally. It is generally accepted that graphical representations
are useful as comprehension aids, but “creating and main-
taining them continues to be a bottleneck in the process”
[16].

Tilley et al. [15] describe a conceptual framework for the

classification of reverse engineering tools that aid in program
comprehension. To develop this classification, they identi-
fied three basic activity sets that are characteristic of the re-
verse engineering process:

� Data gathering through static analysis of the code or
through dynamic analysis of the executing program.

� Knowledge organization by organizing the raw data by
creating abstractions for efficient storage and retrieval.

� Information exploration through navigation, analysis
and presentation.

The exploration of information is the most important of
these activities since it “holds the key to program under-
standing” [15]. The scope of software visualization tools
which exist for the navigation, analysis and presentation of
software information varies widely [17]. Several software
visualization tools show animations of algorithms and data
structures. These tools are frequently used in educational
settings with the goal of teaching widely used algorithms and
data structures. Another class of tools shows the dynamic
execution of programs for debugging, profiling and to un-
derstand run-time behaviour. Other tools focus on showing
textual representations, some of which may be pretty printed
to increase understanding.

This paper is concerned with the class of software visual-
ization tools designed for exploring software structure. The
next section describes a hierarchy of cognitive issues which
should be considered when designing a tool to assist in the
exploration of software structures.

4 Cognitive Design Elements for Software
Exploration Tools

Software exploration tools typically provide graphical
representations of the software structure linked to textual
representations of the source code and documentation with
the goal of helping a maintainer form a mental model of the
software. Of key importance is whether such a tool sup-
ports bottom-up comprehension, top-down comprehension
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or some combination of the two. Also important, especially
for larger systems, is how the maintainer browses or navi-
gates the visualization.

Software exploration tools are similar in flavour to hy-
permedia document browsers. A hypermedia document con-
tains related and linked representations of an information
space. Many of the difficulties experienced by a hyperdoc-
ument reader are the same difficulties as those experienced
by the browser of a software visualization. Indeed, Thüring
et al. [1] describe comprehension of a hyperdocument “as
the construction of a mental model that represents the ob-
jects and semantic relations described in a text.” They say
that a document is coherent if a reader can construct a men-
tal model which corresponds to something in the real world
from reading the document. In the context of software vi-
sualization, we could also say a visualization (or software
documentation) is coherent if the maintainer can construct a
mental model from the given visualization. A software visu-
alization has local coherence when the maintainer can make
sense of the statements and programming units and a visu-
alization has global coherence if the maintainer can gain an
understanding of the macrostructure of the program struc-
ture.

A hierarchy of cognitive issues for increasing the com-
prehension of hypermedia documents is described in [1].
Using the program comprehension models outlined in Sec-
tion 2, we develop a related hierarchy to guide the devel-
opment of a tool to aid in the exploration and comprehen-
sion of software systems (see Fig. 1). This hierarchy has two
main branches. The first branch is intended to capture the
essential processes of the various comprehension strategies
such as the top-down, bottom-up and integrated approaches.
The other branch addresses the cognitive issues of the main-
tainer while he or she browses and navigates the visualiza-
tion of the software structure. This second branch is similar
to those issues which are also relevant for readers of hyper-
documents.

4.1 Improve Program Comprehension

Since the comprehension strategy employed by a main-
tainer is dependent on a variety of factors dictated by the
maintainer, program and task, it would be advantageous for
a tool to support a wide array of comprehension activities.
Although often it is preferable to develop specialized tools
which suit a particular comprehension strategy. This sec-
tion further explores the comprehension models presented
in Section 2 and extracts cognitive design elements which
should be addressed by a tool claiming to aid a given com-
prehension strategy.

4.1.1 Enhance bottom-up comprehension

Bottom-up comprehension involves reading program state-
ments and constructs and chunking these units into higher
level abstractions, until an overall understanding of the pro-
gram is attained. Bottom-up comprehension involves three
main activities: 1) identifying software objects and the rela-
tions between them; 2) browsing code in delocalized plans;
and 3) building abstractions (through chunking) from lower
level units. A comprehension tool to assist in bottom-up
comprehension should address these main activities.

E1: Indicate syntactic and semantic relations between soft-
ware objects

A software visualization should provide immediate and
visible access to the lowest level units in a program such
as the code or visual icons representing these atomic units.
The syntactic and semantic relations of these units must be
obvious or easily accessible. The syntactical relationships
between these units describe the text-structure at the micro-
structure and macro-structure levels. These relationships
are easily derived from source code listings. Semantic re-
lations between software objects require data-flow or func-
tional knowledge of the program. Many tools present this in-
formation in the form of a graph where nodes represent soft-
ware objects and arcs show the relations between the objects.
This method is used by PECAN [18], Rigi [19], VIFOR [20],
Whorf [21], CARE [22], Hy+ [23], Imagix 4D [24] among
others. In some systems, direct links from the software ob-
jects to the corresponding source code are also provided.

E2: Reduce the effect of delocalized plans

A delocalized plan results from the fragmentation of
source code related to a particular algorithm or plan. With-
out tool assistance, reading code belonging to a delocalized
plan can be cumbersome as it may involve frequent switch-
ing between files which will quickly lead to a feeling of dis-
orientation.

Whorf [21] was specifically designed to reduce the ef-
fects of delocalized plans. It supports multiple views of the
program such as source code listings, call-graphs, variable
cross-reference and function cross-reference views. Views
are linked by displaying different instances of an object us-
ing the same colour in each of the views. Code in delocalized
plans is highlighted reducing the effects of fragmentation.

Static analysis tools, such as program slicing, can iden-
tify code belonging to a delocalized plan. Program slicing
is a method for decomposing a program into components
where each component describes some of the system’s func-
tionality. A program slice contains all of the code which is
relevant to that behaviour [25]. SeeSlice [26] is a tool for vi-
sualizing program slices where program files are displayed
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Figure 1: Cognitive Design Elements for Software Exploration
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as columns that contain line representations of procedures.
Procedures may be displayed as open, where each line of
code is displayed as a thin row indented accordingly. Code
that is not part of a slice is elided. Ghinsu [27] (a toolset for
program understanding) displays slicing results in its system
dependence graph to capture the control and data dependen-
cies in the software. The developers of Ghinsu recognize
that non-local interactions in the code are a major cause of
complexity, and so their toolset specifically addresses this
problem.

E3: Provide Abstraction Mechanisms

The decomposition process (the process of building hier-
archical abstractions from the low level software objects and
relations) is the hardest part of bottom-up comprehension,
and yet many tools only support showing a previously de-
composed view [28]. Facilities should be available to allow
the maintainer to create their own abstractions and label and
document them to reflect their meaning. Abstraction can be
supported by selecting lower level objects and aggregating
them into higher level abstractions. In several tools, a sub-
graph (a set of nodes and arcs) may be collapsed into a single
composite or subsystem node [29, 30, 24, 31, 22, 32]. Sev-
eral tools also provide the ability to filter (temporarily elide)
objects which results in a less detailed or abstract graph [26,
29, 30, 24, 22, 32, 20].

4.1.2 Enhance top-down comprehension

Understanding a program top-down requires application do-
main knowledge or previous exposure to the program. The
maintainer formulates hypotheses and reads the code in a
depth-first manner to verify or reject these hypotheses. A
tool supports this process by providing a method for docu-
menting hypotheses and linking the hypotheses to relevant
parts of the program. Facilities to refine hypotheses into sub-
sidiary hypotheses must also be provided. Alternatively, the
tool may provide a layered view of the program (previously
prepared during system evolution or through reverse engi-
neering) which entices a maintainer to explore the program
in a top-down fashion.

E4: Support goal-directed, hypothesis-driven
comprehension

Relatively few systems facilitate top-down comprehen-
sion, where the programmer has an initial mental model or
hypothesis concerning the functionality of the program. The
TLES system (Tool for Layered Explanation of Software)
is compatible with the top-down theory of software under-
standing and supports the creation of a chain of hypothe-
ses and subsidiary hypotheses concerning the properties of
the code [33]. The tool records these hypotheses for future

maintenance. All information needed for understanding is
stored in layers of annotations for recording the evolutionary
history of source code constructs. This mechanism also sup-
ports recording of postponed or discarded hypotheses, use-
ful documentation for future maintenance [11]. However,
TLES is more suited to documenting evolving systems rather
than as a redocumentation tool.

E5: Provide overviews of the system architecture at
various levels of abstraction

To explore programs top-down, access to the software ar-
chitecture should be provided at various levels of abstrac-
tion. In Rigi, a software engineer or reverse engineer decom-
poses a program from the bottom-up by creating a hierar-
chy of abstractions. This hierarchy is then available for top-
down exploration during subsequent maintenance. To facil-
itate access to the program at different levels of abstraction
Rigi supports overview windows which show the hierarchi-
cal structure of the software structure and general windows
which each contain a slice of the hierarchy at selected levels
of abstraction [34].

Landscape views [35], Hy+ [36] and SHriMP views [34]
use a nested graph representation of the software architec-
ture. The hierarchical structure is displayed by the nested
graph. Information at any level of information can be dis-
played or elided to show overviews of the system architec-
ture at selected levels of abstraction.

4.1.3 Integrate bottom-up and top-down approaches

Von Mayrhauser and Vans observed programmers using both
bottom-up and top-down approaches [11]. Programmers
create various mental models and switch between them dur-
ing the course of comprehension. The program model de-
scribes the control flow abstractions of the program. The sit-
uation model describes the data flow and functional abstrac-
tions. Both control flow and data flow mental models can be
presented visually using the graph model. Displaying how
functional abstractions relate to the application domain is a
harder task. Another model which can be visually presented
shows the behaviour of an executing program. A tool ad-
dressing the integrated comprehension process should sup-
port the construction of several linked views representing a
variety of cross-referenced mental models.

E6: Support the construction of multiple mental models

Not only do mental models differ in context and level
of abstraction, but they also differ from one maintainer to
another [37]. Several mental models of a program may be
presented visually using multiple views. Many of the tools
already mentioned support multiple views of textual and
graphical views (PLUM [18], Rigi [38], Whorf [21], Garden
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[39], VIFOR [20], CARE [22], SeeSlice [26], and Imagix
[24]). Example graphical views show call-graphs and vari-
able usage diagrams. Example textual views include dis-
playing source code, program slices and software statistics
(metrics). Some tools, such as PECAN [18], also support a
view showing the execution of the program. Multiple views
are often shown side by side, or displayed using overlapping
and scrollable windows. Von Mayrhauser and Vans note
that many tools support recording information for the mental
model at the program level, but few tools support recording
information for the situation and domain models [11].

E7: Cross-reference mental models

Maintainers frequently switch one from one model to
another in the course of comprehension [12]. Often these
switches are the result of a maintainer mentally cross-
referencing different mental models. These mental models
should be linked to record the cross-referencing informa-
tion for later use. In some systems, multiple views are vi-
sually linked by highlighting instances of the same object
in all views. This is how multiple views are linked in Rigi
[38], PECAN [18], Whorf [21], CARE [22] and Imagix [24].
Many systems also support synchronized views by updating
all views when one view is altered in some way. For exam-
ple, Hy+ supports synchronizedgraphical and textual brows-
ing of source code [23].

The Programmer’s Apprentice tool has direct support for
both development of the program model and situation model
[40]. This tool uses Plan Calculus to formally represent pro-
grams and clichés (plans) [40]. Plan Calculus has a graphical
notation and a formal semantics which can be used to show a
mapping between an abstraction of the implementation (the
program model) and a specification abstraction (the situation
model). A diagram for each model is displayed side by side
with hooked lines to show correspondences between the two
diagrams.

4.2 Reduce the Maintainer’s Cognitive Overhead

When comprehending larger software systems, the cog-
nitive overhead increases rapidly. Visualization tools are of-
ten supplied in an effort to reduce this cognitive overhead.
Cognitive overhead can be alleviated by providing good nav-
igation facilities, meaningful orientation cues, and by effec-
tively presenting the information so that it can contribute to
program comprehension. Navigation provides the facilities
to go from one place to another. Orientation cues show the
user where they are currently, how they got there and how to
go somewhere else [1].

Although a tool may provide many navigation methods
and effective orientation cues, the user may still feel over-
whelmed if they are presented with too much information.

Effective presentation techniques can alleviate the effects of
displaying large amounts of information [41]. Disorienta-
tion may also result from a badly designed user interface
which lacks in a feeling of continuity between displays [1].

4.2.1 Facilitate navigation

Navigation facilities include mechanisms for browsing
source code, program documentation, graphical views of
software structure and documented mental models of the
program.

E8: Provide directional navigation

Directional navigation describes mechanisms for read-
ing source code and program documentation sequentially,
browsing the software using data-flow and control-flow re-
lationships, traversing software structure in hierarchical ab-
stractions and by following user-defined program or appli-
cation dependent links. Source code and documentation
may be browsed sequentially using text editors or it may be
browsed following control-flow or data-flow paths by link-
ing nodes and arcs in graphical representations to the corre-
sponding source code. Alternatively, code and documenta-
tion may be navigated with hypertext links. In Imagix [24],
code and documentation is generated in HTML format to be
browsed by a web browser. Subsystem hierarchies are navi-
gated in Rigi [38], Whorf [21], CARE [22] and Imagix [24]
by selecting subsystem nodes to open a window to show a
view of the subsystem node selected.

E9: Support arbitrary navigation

Arbitrary navigation is supported when a maintainer may
navigate to locations not necessarily reachable by follow-
ing an application or user-defined link. Arbitrary navigation
is supported in books by readers dog-earing the corners of
pages, and in hypermedia documents by symbolically mark-
ing pages of interest. Few tools (other than tools which pro-
vide hypertext like access to source code and documenta-
tion) provide this form of navigation access. Saving views
(supported in PECAN [18] and Rigi [38]) may be used as a
mechanism for storing arbitrary navigation steps. A main-
tainer creates a snapshot of the current view so that it may
be accessed in the future without having to follow defined
links in the software visualization. Searching capabilities are
available in several tools to provide another mechanism for
navigation [24, 21, 22, 19].

E10: Provide navigation between mental models

Navigation between the various mental models is the key
to successfully using them for comprehension [11]. This
is a non-trivial problem, as there may be one-to-many and
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many-to-one links from one model to another. For exam-
ple, a one-to-many mapping occurs when a description of
some of the program functionality pertains to many chunks
of code in several source files. Some tools implicitly show
mappings between two views visually. However, this ap-
proach requires that both models are displayed concurrently
on the screen which may not be feasible for larger software
systems.

4.2.2 Provide orientation cues

Orientation cues indicate to the maintainer where they are
currently exploring in the software structure, how and why
they are there and how to switch to a different focus.

E11: Indicate the maintainer’s current focus

Depending on the task at hand, a maintainer may be in-
terested in viewing source code for a function, examining a
diagram which describes some of the program’s functional-
ity or browsing a set of documentation. The focus of inter-
est may be fragmented as the maintainer tries to understand
non-local interactions in the code. The use of judicious ori-
entation cues can be used to indicate the current focus in a
complex display.

Textual views of source code implicitly show the focus
since the code of interest is directly visible. However, other
related code may not be visible. Indicating the maintainer’s
current focus, requires not only showing the artifacts that are
of immediate interest, but also displaying context for those
artifacts. Many systems, such as Rigi [38] and Whorf [21],
use highlighted nodes and arcs to emphasize the current fo-
cus in a graph. In larger graphs highlighted nodes and arcs
may not always be obvious. Some software visualization
systems (Hy+ [23], PLUM [42] and SHriMP Views [34])
make use of fisheye display techniques [43] by allocating
more screen space to more important information by display-
ing it larger than secondary information.

E12: Show the path that led to the current focus

In hypermedia document browsers there are often histo-
ries of traveled paths to indicate to the reader how a particu-
lar document in the structure was reached. Similar facilities
may be used for browsing software documents. In graph rep-
resentations of software structures, nodes and arcs are often
used to access other parts of the software. Accessed nodes
in the graph may be highlighted in an overview window to
show the path traveled in the software hierarchy. Recording
why a maintainer is interested in a particular software object
may be very important. The reason for reading a piece of
code may be the result of verifying a particular hypothesis or
because the code must be changed or adapted in some way.
There is typically little tool support for recording this sort of

temporary information.

E13: Indicate the options for reaching new nodes

Given that a user is at a certain point in the exploration of
a software system, this design element addresses not which
facilities are available for further exploration, but rather how
the user is made aware of the facilities available for further
exploration. In textual views, a maintainer can browse re-
lated code by opening other source files explicitly. Some
tools provide HTML views of the source code and documen-
tation [24, 44]. Web browsers are used to browse related
code using hyperlinks. The hyperlinks are the visual cues for
accessing other parts of the documentation. The EDSA (Ex-
pert Dataflow and Static Analysis) tool [45] allows a main-
tainer to follow data-flow or control-flow paths in program
slices. In graphical representations of software structure, the
graph itself can be used to display further navigation options.

4.2.3 Reduce disorientation

For the exploration of larger systems, reducing disorienta-
tion effects is critical. Disorientation can be alleviated by re-
moving some of the unnecessary cognitive overhead result-
ing from poorly designed user interfaces and by using spe-
cialized graphical views for presenting large amounts of in-
formation.

E14: Reduce additional effort for user-interface
adjustment

Poorly designed interfaces will of course induce extra
overhead. Available functionality should be visible and rel-
evant [46] and should not impede the more cognitively chal-
lenging task of understanding a program.

Significant cognitive overhead may be introduced due
to the disorientation caused by switching views for differ-
ent mental models. SeeSys [47] provides a slider which the
maintainer can use to animate the views with respect to time.
However, there is a discontinuity between the views which
may cause disorientation. Kimelman et al. describe the
application of morphing techniques to iterate smoothly be-
tween different layouts [31]. Although there is extra over-
head involved in computing the transitions between views,
the effects of reduced disorientation may be worth the effort.

E15: Provide effective presentation styles

For complex graphs typical of larger software systems,
layout algorithms are used to display the graph in a more
meaningful manner. Although software has no inherent
shape or colour, a graph can be drawn in such a way that
it communicates key characteristics about the software. For
example, a graph which contains many crossing arcs will
give the impression of increased complexity in the software.
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Many software visualization tools (VIFOR [20], CIA [29],
CARE [22], Hy+ [36], HierNet [30], PLUM [42], SeeSys
[47] and Rigi [48]) recognize the importance of graph lay-
outs and provide specialized or customized layouts suitable
for presenting software graphs.

5 Towards an Effective Interface for Software
Exploration

On review of the literature, there are several issues per-
tinent to program comprehension which are not adequately
addressed by current software exploration tools. Although
many tools do support bottom-up comprehension, relatively
few tools support the integrated and top-down comprehen-
sion models. In particular, more support for mapping do-
main knowledge to code and switching between mental
models would be useful. Better navigation methods which
encompass meaningful orientation cues and effective pre-
sentation styles for browsing large software systems is also
an area for future research.

We have begun to apply the cognitive design elements
developed in Section 4 to the design of a software visualiza-
tion technique called SHriMP (Simple Hierarchical Multi-
Perspective) views [49]. This approach has been integrated
in the Rigi system and was developed in response to some
deficiencies identified with the original visualization meth-
ods used in Rigi [49]. The original interface consisted of
a multiple window approach for displaying software struc-
tures. It was observed that some users frequently lost con-
text due to the lack of orientation cues (E11,E12,E13). In
addition, users had difficulties switching from one view to
another when new windows were opened (E15).

The SHriMP technique uses a fisheye view of nested
graphs to show a single view of the software structure.
The nested graph display of software structures is useful
for displaying multiple levels of abstraction (E5) and pro-
vides effective orientation cues lacking in the original inter-
face (E11,E12,E13). The interactive fisheye view should re-
duce cognitive overhead for user interface adjustment since
it shows both context and detail in a single view (E15). It is
hoped that the SHriMP approach will address issues relevant
to the integrated model of program comprehension by sup-
porting switching between mental models at various levels
of abstraction (E7).

A preliminary experiment was performed to evaluate the
effectiveness of this new interface in Rigi [50]. Although
the focus of this initial experiment was to refine the exper-
iment design, the results were encouraging. The experiment
methodology developed for this initial test will be used to
conduct larger scale experiments in the near future. We in-
tend to use the hierarchy of design elements as a blueprint

against which the distinctive features of the SHriMP and
Rigi interfaces may be compared from a cognitive perspec-
tive. The results and observations from these experiments
will drive design decisions in subsequent reimplementations
of the SHriMP interface. Using this iterative cycle of design
and test, we are working towards a more effective interface
for software exploration.

6 Conclusions

This paper described a hierarchy of cognitive issues
which should be considered during the design of software
exploration tools. The hierarchy of issues was derived
through examination of the cognitive models of program
comprehension. Examples of how existing software explo-
ration tools address each of these issues was provided.

In [15], Tilley et al. describe a framework for classify-
ing reverse engineering tools. The hierarchy of design ele-
ments developed in this paper can be used for a more detailed
classification of tools which are geared towards the analysis,
presentation and navigation of software information. In this
paper, we illustrated how several software visualization tools
address each of the cognitive design elements. An extension
of this work would be to use the hierarchy of design elements
as a basis for a taxonomy to compare and contrast software
exploration tools.

In general, there has been a lack of evaluation of soft-
ware exploration tools. Hopefully, this trend will not con-
tinue. The hierarchy of cognitive design elements identified
in this paper may be used for selecting criteria to evaluate
software exploration tools.

The hierarchy of cognitive design elements raises our
awareness of the issues and difficulties which should be ad-
dressed in the design of software exploration tools. Al-
though the hierarchy in itself does not provide enough in-
sight as to how these issues should be resolved, it may be
used for deriving sets of guidelines when making key inter-
face design decisions.
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