
Seven Issues for the Next Generation

of Program Understanding Systems
y

Marijana Tomic

Centre for Advanced Studies

IBM Software Solutions

844 Don Mills Rd.

North York, ON M3C 1V7

mtomic@vnet.ibm.com

Scott R. Tilley

Department of Computer Science

University of Victoria

P.O. Box 3055, MS7209

Victoria, BC V8W 3P6

stilley@csr.uvic.ca

Abstract

This paper highlights seven of the major issues that

must be addressed by the next generation of program

understanding systems. These issues are based on

some lessons learned using di�erent reverse engineer-

ing tools and techniques, both separately and together

as part of an integrated toolset, in an on-going pro-

gram understanding project. The project's focus is on

reengineering real-life software systems on the order of

O(106) lines of code.

Keywords: program understanding, reverse engi-

neering, software systems

1 Introduction

Since 1991 the CAS1 Program Understanding

Project has been using reverse engineering technology

to support SQL/DS2 product development and main-

tenance. SQL/DS is an excellent example of a legacy

software system: it is a large, successful, and mature

product. It is also under continuous pressure to run on

new environments and provide increased functionality.

It is representative of systems that that are inherently

di�cult to understand and maintain because of their

size, complexity, and evolution history. To address the

yThis work was supported in part by the British Columbia

Advanced Systems Institute, the IBM Software Solutions
Toronto Laboratory, the InformationTechnology Research Cen-

tre of Ontario, the IRIS Federal Centres of Excellence, the
Natural Sciences and Engineering Research Council of Canada,
the Science Council of British Columbia, and the University of
Victoria.

1Centre for Advanced Studies, IBM Software Solutions
Toronto Laboratory.

2SQL/DS (Structured Query Language/Data System) is a
multimillion-line relational database system.

challenges posed by such systems, reverse engineering

for program understanding is often used [1].

Reverse engineering is concerned with the analy-

sis of existing systems in order to make them more

understandable for maintenance and evolution pur-

poses. The importance of reverse engineering has

grown tremendously as corporations face mounting

maintenance and reengineering costs for large legacy

software systems. Such systems are indispensable in

day-to-day operations and have been built decades

ago.

Program understanding is the process of develop-

ing mental models of a software system's architecture,

purpose, and behavior. There have been numerous re-

search e�orts to develop tools that provide assistance

during the understanding process, but it is clear that

no one approach or tool is su�cient by itself. The soft-

ware engineer can best be served through a collection

of tools that complement each other in functionality.

The objectives of the program understanding

project include the development of an integrated en-

vironment for reverse engineering which o�ers tools

for subsystem identi�cation and design recovery. In

particular, the project address issues in the areas of

software analysis technology, algorithms to extract

system abstractions, integration technology applicable

to CASE, user-interface technology to model, browse,

navigate, and search large collections of software ar-

tifacts interactively, and reverse engineering process

models. A common repository plays an integral part

in the integration of the diverse tools into the environ-

ment.

The project involves a team from CAS and �ve re-

search groups from University of Toronto, University

of Victoria, McGill University, University of Michigan,

and National Research Council. All groups are work-

ing cooperatively on complementary reverse engineer-

ing approaches, using the source code of SQL/DS as

a common reference legacy system.

The next section discusses the primary reverse engi-

neering tools and techniques used in the project. Sec-

tion 3 compares and contrasts these tools. Section 4

lists the seven issues we feel the next generation of

program understanding systems must address. These

issues are based on our experiences in using the tools

(both separately and together). Section 5 summarizes

the paper.

2 Reverse engineering

tools and techniques

The two main tools used in the project are Rigi

[2] and the Software Re�nery [3]. Rigi is a realization

of the PHSE (ProgrammableH yperS tructure Editor)

[4], a domain-independent meta reverse engineering

environment framework. It is instantiated for a partic-

ular application domain by specializing its conceptual

model, by extending its core functionality, and by pro-

viding an application-speci�c personality.

The Software Re�nery is a commercially available

toolkit from Reasoning Systems. It is composed of

three parts: Dialect (used to produce parsers and

printers for programming languages), InterVista (used

tools to create the user interfaces), and Re�ne (a

high-level multi-paradigm programming language). It

makes extensive use of freely available software such

as the X Window System, bison (a yacc-like program),

and emacs.

The reverse engineering techniques used in the

project can be broadly categorized into three ar-

eas: defect �ltering, structural redocumentation, and

pattern-matching analyses. The CAS group is con-

cerned with defect �ltering [5]: improving the quality

of the SQL/DS base code and maintenance process

through application-speci�c analysis. They where us-

ing the Software Re�nery to parse the source code of

SQL/DS into a form suitable for analysis. Some of the

quality-related defects searched for include: program-

ming language violations (overloaded keywords, poor

data typing), implementation domain errors (data

coupling, addressability), and application domain er-

rors (coding standards, business rules).

The University of Victoria team focuses on struc-

tural redocumentation [6]: the production of in-the-

large documents describing high level subsystem ar-

chitecture. Reconstructing the design of existing soft-

ware is especially important for legacy systems such

as SQL/DS, since there are great di�erences in under-

standing software systems of 1,000 lines of code versus

those of 1,000,000 lines. The redocumentation is per-

formed using Rigi.

NRC, the University of Michigan, and McGill Uni-

versity are working on pattern-matching approaches

at various levels: textual, syntactic, and semantic.

The purpose of pattern matching is to identify arti-

facts and relations of a subject system. In the project,

three di�erent levels of abstraction are used: textual,

syntactic, and semantic. The textual pattern match-

ing performed by NRC attempts to locate source code

repetitions in the subject system, as might result from

common cut/copy/edit/paste operations. The syntac-

tic pattern matching performed by the University of

Michigan attempts to locate speci�c source code frag-

ments using a special-purpose query language called

SCRUPLE. The semantic pattern matching performed

by McGill University attempts to locate code frag-

ments using a plan matching algorithm.

3 Tool comparison

Rigi and Re�ne share the common goal of aid-

ing system understanding through reverse engineer-

ing. Rigi provides a completely programmable inter-

face that allows for easy modeling, tailoring, and ex-

tensibility. However, Re�ne provides more native ca-

pabilities for �ne-grained analysis of a program. Work-

ing cooperatively, those two tools can greatly aid the

comprehension process; at this point we have just

scratched the surface of the bene�ts of the integration.

Rigi's exibility is illustrated in Figure 1. The �g-

ure depicts a spring layout of a logical SQL/DS sub-

system (the routines associated with adding a foreign

key to the database, within the same physical com-

ponent). A spring layout is chosen to show the data

being shared by the modules. The data used for the

visualization was produced through the Software Re-

�nery and loaded into an instance of Rigi programmed

with a PL/AS domain model.

Re�ne's analysis capabilities are illustrated in Fig-

ure 2. The �gure shows a defect �lter running on a

C program (a C/C++ compiler). The defect �lter

searches for coding standards violations in the source

code.

4 Seven issues

Using Rigi and the Software Re�nery in the project

has proven very valuable. It has also raised a num-

ber of issues that should be addressed in subsequent

phases of the project. Many of them are germane to

Figure 1: Data coupling visualization

the reverse engineering community as a whole. Seven

of the most important are:

1. Integration with business process reengineering

Software reverse engineering should be considered

in the global picture together with business pro-

cess reengineering. It is important to be aware

that a reengineering project can fail if performed

in isolation, and not merged in with the larger

motif. Even with this knowledge, the question

remains: How can we merge software reverse

engineering with business process reengineering?

There could be numerous bene�ts from putting

these two activities together. Which tools and

techniques are similar in the two domains? Which

are di�erent?

2. Targeting non-traditional users

The information produced through reverse en-

gineering should be presented in a way that is

understandable not just to programmers, but to

non-programmers as well. During the project we

learned that for adequate feedback, we needed

not only developers and maintainers, but also

testers, technical writers, and managers; devel-

opers are only one aspect of a large software

project. Non-programmers can help in extracting

business rules, but only if the reverse engineering

results are presented in an acceptable and under-

standable form. How might these non-traditional

clients use the information produced through re-

verse engineering?

3. Reuse experience to guide tool selection

When starting a new reengineering task, how

does one choose which reverse engineering tools

and techniques are appropriate for a particular

project? Can you reuse experience from previous

projects? If the expertise from previous e�orts

could be reused in the new application domain,

signi�cant start-up bene�ts could be realized.

4. Supporting heterogeneous toolsets

Researchers usually attempt to incorporate a wide

variety of functions into their tool. This often re-

sults in a tool that is clumsy and too complicated

to use. In our project, we combined di�erent

reverse engineering tools into one environment.

Figure 2: Coding standard violations

That way, each tool is de�ned for one speci�c re-

verse engineering technique. In our case, Rigi is

more focused on the overall structure of the sys-

tem's components, and Re�ne is more focused on

the internal structure of individual source �les.

We learned some things about integration in the

project, but many questions remain. What is

the appropriate integration strategy to use when

combining di�erent reverse engineering tools into

one's environment? Is it worthwhile to commit re-

sources to building separate setups for each tool?

Is it possible to build an environment which can

accommodate every tool? Some combination of

tools?

5. Support exploratory reverse engineering

The goal is not always clear during reverse engi-

neering. Even the overall goal of \program un-

derstanding' is ill-de�ned. For this reason, the

environment should support exploratory reverse

engineering. This would permit \what if" scenar-

ios to be evaluated, before actual resources are

committed to a large reengineering e�ort.

6. Support incrementality

Incremental reverse engineering is needed to sup-

port large software systems, where it is unlikely

one would attempt to understand its entire struc-

ture all at once. It is also needed to support the

caching of domain knowledge created during re-

verse engineering, so that the next session can

\pick up" where the previous one left o�. Incre-

mentality also means that when the underlying

source code changes, the results of reverse engi-

neering should not be completely invalidated.

7. Incorporate cost/bene�ts analysis into the process

Can we answer the question: Should we continue

to maintain the system, or redesign it? If we de-

cided to redesign our software, should we reengi-

neer it, or write a version from scratch? What are

the cost/bene�ts to reverse engineering? These

questions are critical in real-world reengineering

exercises, yet few systems allow for this type of in-

formation to be accurately incorporated into the

reverse engineering process.

5 Summary

The program understanding project's investigation

into di�erent reverse engineering tools and techniques

has proven very enlightening. Using the power of any

single tool produces limited bene�ts when applied to

large legacy systems. Integrating complementary tools

into a uni�ed environment seems to be the most fa-

vorable approach|but it is a non-trivial activity. The

seven issues described in Section 4 are just some of

the many important items that the next generation of

program understanding systems must address.

TrademarksSQL/DS is a trademarks of Interna-

tional Business Machines Corporation.

The Software Re�nery and REFINE are trademarks

of Reasoning Systems Inc.

References

[1] E. Buss, R. D. Mori, W. M. Gentleman, J. Henshaw,

H. Johnson, K. Kontogiannis, E. Merlo, H. A. M�uller,

J. Mylopoulos, S. Paul, A. Prakash, M. Stanley, S. R.
Tilley, J. Troster, and K. Wong. Investigating reverse

engineering technologies for the CAS program under-

standing project. IBM Systems Journal, 33(3):477{
500, 1994.

[2] H. M�uller, S. Tilley, M. Orgun, B. Corrie, and N. Mad-
havji. A reverse engineering environment based on

spatial and visual software interconnection models.

In Proceedings of the Fifth ACM SIGSOFT Sympo-
sium on Software Development Environments (SIG-

SOFT '92), (Tyson's Corner, Virginia; December 9-11,

1992), pages 88{98, December 1992. In ACM Software
Engineering Notes, 17(5).

[3] P. Newcomb and L. Markosian. Automating the mod-
ularization of large cobol programs: Application of an

enabling technology for reengineering. In WCRE '93:

Proceedings of the 1993 Working Conference on Re-
verse Engineering, (Baltimore, Maryland; May 21-23,

1993), pages 222{230. IEEE Computer Society Press

(Order Number 3780-02), May 1993.

[4] S. R. Tilley. Domain-Retargetable Reverse Engineering.

PhD thesis, Department of Computer Science, Univer-

sity of Victoria, 1994 (in progress).

[5] J. Troster, J. Henshaw, and E. Buss. Filtering for qual-

ity. In the Proceedings of CASCON '93, (Toronto, On-

tario; October 25-28, 1993), pages 429{449, October
1993.

[6] K. Wong, S. R. Tilley, H. A. M�uller, and M.-A. D.

Storey. Structural redocumentation: A case study. To

appear in IEEE Software, January 1995.

