
Dimensions of Software Architecture for Program Understandingy

Hausi A. M�uller� Kenny Wong� Scott R. Tilley�

hausi@csr.uvic.ca kenw@csr.uvic.ca stilley@sei.cmu.edu

�Department of Computer Science �Software Engineering Institute

University of Victoria Carnegie Mellon University

Victoria, BC V8W 3P6 Pittsburgh, PA 15213-3890

Abstract

Software architecture is usually considered in terms

of software construction rather than software un-

derstanding. Architectures for construction typi-

cally embody design patterns based on software en-

gineering principles. In contrast, architectures for

understanding represent change patterns and busi-

ness rules based on conceptual models. This paper

presents three dimensions of software architecture

for program understanding. In each dimension, the

user of the architecture plays a central role.

Keywords: program understanding, software ar-

chitecture, software evolution.

1 Introduction

Software architecture has traditionally been ori-

ented toward new software construction, not to-

ward software understanding for maintenance and

evolution. This orientation has lead to a view of

software architecture as consisting of design pat-

terns, reusable components, and structural depen-

dencies. In this view, architecture is a framework

yThis work was supported in part by the British

Columbia Advanced Systems Institute, the IBM Software

Solutions Toronto Laboratory Centre for Advanced Studies,

the IRIS Federal Centres of Excellence, the Natural Sciences

and Engineering Research Council of Canada, and the Uni-

versity of Victoria.

for tracking requirements, a technical basis for de-

sign, a managerial basis for cost estimation and

process management, an e�ective basis for reuse,

and a basis for dependency and consistency analy-

sis [1].

While helpful, this view ignores the importance of

a multitude of architectures based on change pat-

terns, business rules, or conceptual models used

during program understanding. The users and uses

are di�erent. Architectures for software design

and construction cater to designers, integrators,

testers, and inspectors; architectures for software

understanding cater to software engineers who need

to understand software systems during long-term

maintenance. For software understanding espe-

cially, we argue for an alternative, yet compatible,

interpretation of architecture that places the indi-

vidual user in a central role.

The need to consider individual users is partly ev-

idenced by the following fact. Software exists as a

hybrid of two imperatives: intangibility and tangi-

bility [2]. The intangibility imperative views soft-

ware as an abstract idea similar to mathematics.

The tangibility imperative concerns more immedi-

ate, accessible, and physical concepts. The main

observation is that intangibles are best addressed

and understood at the level of individuals, not com-

mittees. Thus, a comprehensive treatment of un-

derstanding software requires support not only for

groups, but for individual users.



2 A user-oriented interpretation

For software understanding, the notion that there

is an architecture existing in an objective state, in-

dependent of the engineers probing it, is awed.

We believe there is no single, de�nitive architec-

ture of a software system. Instead, there are

many architectures corresponding to many diverse

purposes and users. The single-architecture view

is limited and ignores levels of user involvement,

thereby lacking context. In e�ect, architectures are

user-created and depend in part on how we observe

it and what we choose to see.

In addition, there is no right architecture for a soft-

ware system that is valid for all users. Each user

has a di�erent interpretation of what the software

is about. These are not mere subjective and vir-

tual \perceptions" of a single, true architecture; an

architecture to a user is very real and meaningful.

Individual maintainers, managers, and customers

have their own architectures.

An architecture for understanding may span var-

ious levels ranging from the concrete to the ab-

stract: implementation, structural, functional, and

behavioral [3]. For one user, an architecture may

contain a combination of detailed code, structural

design patterns, object interaction behavior, and

functional purpose. For another user, an architec-

ture may contain a combination of entirely di�er-

ent information: code complexity measures, main-

tenance e�ort, risk analyses, and personnel assign-

ments. There is no conict in having multiple ar-

chitectures for understanding. Moreover, these ar-

chitectures are continually changing and in ux,

not only because the software is evolving, but also

because the users and their needs are changing.

Program understanding necessitates a subtle ap-

preciation of these rich and diverse architectures.

The idea of multiple architectures has a major

impact on the design of tools and methodologies

for program understanding. Many program un-

derstanding tools deal with the software as if it

has a single architecture, such as module intercon-

nections, that is right for everyone. This ignores

the fact that users each have their own conceptual

models, methods of reasoning, and needs for under-

standing. Diverse needs such as business rules and

change patterns are lost in a module interconnec-

tion architecture. Annotating a module diagram

with this information is inadequate, cluttering, and

relegates the information as second class to some

users. It is irrelevant and to a user whether this in-

formation is collected into a grand, uni�ed architec-

ture. What is needed is tool support for expressing

and analyzing a tapestry of multiple, user-oriented,

architectures for understanding.

Unlike architectures for construction, which typi-

cally deal with exact information for purposes such

as code generation, debugging, and integration, ar-

chitectures for understanding must allow and deal

with inexact or partial information. The art of

e�ective understanding is to know what to leave

out and what to ignore [4]. Incompleteness is the

norm, not only for practical reasons of the scala-

bility and immaturity of the analysis methods, but

because there cannot be a de�nitive architecture in

an evolving system. Even inconsistency and con-

icts from trying to consolidate two architectures

are acceptable, since humans can easily deal with

incomplete and inconsistent information. This dif-

fers from the speci�cations and design architectures

used by computers, which need to be exact, com-

plete, and consistent.

3 The role of the user

Since architectures for understanding are funda-

mentally user-created entities, it is logical that pro-

gram understanding tools and methodologies in-

2


