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Abstract

Software architecture is usually considered in terms

of software construction rather than software un-

derstanding. Architectures for construction typi-

cally embody design patterns based on software en-

gineering principles. In contrast, architectures for

understanding represent change patterns and busi-

ness rules based on conceptual models. This paper

presents three dimensions of software architecture

for program understanding. In each dimension, the

user of the architecture plays a central role.
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1 Introduction

Software architecture has traditionally been ori-

ented toward new software construction, not to-

ward software understanding for maintenance and

evolution. This orientation has lead to a view of

software architecture as consisting of design pat-

terns, reusable components, and structural depen-

dencies. In this view, architecture is a framework
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for tracking requirements, a technical basis for de-

sign, a managerial basis for cost estimation and

process management, an e�ective basis for reuse,

and a basis for dependency and consistency analy-

sis [1].

While helpful, this view ignores the importance of

a multitude of architectures based on change pat-

terns, business rules, or conceptual models used

during program understanding. The users and uses

are di�erent. Architectures for software design

and construction cater to designers, integrators,

testers, and inspectors; architectures for software

understanding cater to software engineers who need

to understand software systems during long-term

maintenance. For software understanding espe-

cially, we argue for an alternative, yet compatible,

interpretation of architecture that places the indi-

vidual user in a central role.

The need to consider individual users is partly ev-

idenced by the following fact. Software exists as a

hybrid of two imperatives: intangibility and tangi-

bility [2]. The intangibility imperative views soft-

ware as an abstract idea similar to mathematics.

The tangibility imperative concerns more immedi-

ate, accessible, and physical concepts. The main

observation is that intangibles are best addressed

and understood at the level of individuals, not com-

mittees. Thus, a comprehensive treatment of un-

derstanding software requires support not only for

groups, but for individual users.



2 A user-oriented interpretation

For software understanding, the notion that there

is an architecture existing in an objective state, in-

dependent of the engineers probing it, is awed.

We believe there is no single, de�nitive architec-

ture of a software system. Instead, there are

many architectures corresponding to many diverse

purposes and users. The single-architecture view

is limited and ignores levels of user involvement,

thereby lacking context. In e�ect, architectures are

user-created and depend in part on how we observe

it and what we choose to see.

In addition, there is no right architecture for a soft-

ware system that is valid for all users. Each user

has a di�erent interpretation of what the software

is about. These are not mere subjective and vir-

tual \perceptions" of a single, true architecture; an

architecture to a user is very real and meaningful.

Individual maintainers, managers, and customers

have their own architectures.

An architecture for understanding may span var-

ious levels ranging from the concrete to the ab-

stract: implementation, structural, functional, and

behavioral [3]. For one user, an architecture may

contain a combination of detailed code, structural

design patterns, object interaction behavior, and

functional purpose. For another user, an architec-

ture may contain a combination of entirely di�er-

ent information: code complexity measures, main-

tenance e�ort, risk analyses, and personnel assign-

ments. There is no conict in having multiple ar-

chitectures for understanding. Moreover, these ar-

chitectures are continually changing and in ux,

not only because the software is evolving, but also

because the users and their needs are changing.

Program understanding necessitates a subtle ap-

preciation of these rich and diverse architectures.

The idea of multiple architectures has a major

impact on the design of tools and methodologies

for program understanding. Many program un-

derstanding tools deal with the software as if it

has a single architecture, such as module intercon-

nections, that is right for everyone. This ignores

the fact that users each have their own conceptual

models, methods of reasoning, and needs for under-

standing. Diverse needs such as business rules and

change patterns are lost in a module interconnec-

tion architecture. Annotating a module diagram

with this information is inadequate, cluttering, and

relegates the information as second class to some

users. It is irrelevant and to a user whether this in-

formation is collected into a grand, uni�ed architec-

ture. What is needed is tool support for expressing

and analyzing a tapestry of multiple, user-oriented,

architectures for understanding.

Unlike architectures for construction, which typi-

cally deal with exact information for purposes such

as code generation, debugging, and integration, ar-

chitectures for understanding must allow and deal

with inexact or partial information. The art of

e�ective understanding is to know what to leave

out and what to ignore [4]. Incompleteness is the

norm, not only for practical reasons of the scala-

bility and immaturity of the analysis methods, but

because there cannot be a de�nitive architecture in

an evolving system. Even inconsistency and con-

icts from trying to consolidate two architectures

are acceptable, since humans can easily deal with

incomplete and inconsistent information. This dif-

fers from the speci�cations and design architectures

used by computers, which need to be exact, com-

plete, and consistent.

3 The role of the user

Since architectures for understanding are funda-

mentally user-created entities, it is logical that pro-

gram understanding tools and methodologies in-
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