
On Integrating Visualization Techniques for
Effective Software Exploration

M.-A.D. Storeyyz K. Wongz F.D. Fracchiay H.A. Müllerz

ySchool of Computing Science zDepartment of Computer Science
Simon Fraser University University of Victoria

Burnaby, BC, Canada Victoria, BC, Canada

Abstract

This paper describes the SHriMP visualization technique for seam-
lessly exploring software structure and browsing source code, with a
focus on effectively assisting hybrid program comprehensionstrate-
gies. The technique integrates both pan+zoom and fisheye-view vi-
sualization approaches for exploring a nested graph view of soft-
ware structure. The fisheye-view approach handles multiple fo-
cal points, which are necessary when examining several subsys-
tems and their mutual interconnections. Source code is presented
by embedding code fragments within the nodes of the nested graph.
Finer connections among these fragments are represented by a net-
work that is navigated using a hypertext link-following metaphor.
SHriMP combines this hypertext metaphor with animated panning
and zooming motions over the nested graph to provide continuous
orientation and contextual cues for the user. The SHriMP tool is
currently being evaluated in several user studies. Observations of
users performing program understanding tasks with the tool are dis-
cussed.

CR Categories: H.5.1 [Information Interfaces and Retrieval]:
Multimedia Information Systems—Hypertext-navigation and
maps; H.5.1 [Information Interfaces and Retrieval]: User
Interfaces—Evaluation/methodology

Keywords: Nested graphs, pan and zoom, fisheye views, hyper-
text, mental map, software visualization, program understanding.

1 Introduction

Understanding a software system is often a difficult process because
of missing, inconsistent, or even too much information. Software
visualizations are often provided in an effort to ease understand-
ing [17]. Some visualization tools show animations of algorithms
and data structures, often for educational purposes. Others show the
run-time behavior of a program to aid debugging, testing, or per-
formance optimization tasks. Some tools focus on “pretty printing”
listings of the source code to increase readability and understanding.
Another class of tools, the subject of this paper, presents views of
static structures in the software linked to textual source code views
to enhance program understanding during software maintenance.

In many maintenance situations, program code may be the only
source of reliable information. Higher-level, structural information
may be recovered from the code using various reverse engineer-
ing approaches [4]. Effectively structuring this information for fu-
ture exploration is critical to program understanding [30]. Unfortu-
nately, it is not always clear how to visually present this higher-level
information for subsequent navigation and analysis to enhance un-
derstanding.

Many researchers have conducted experiments to observe how
programmers explore program information. This research has re-
sulted in several cognitive theories to describe the program com-
prehension process. Some theories propose that programs are un-
derstood “top-down”, by reconstructing knowledge about the appli-
cation domain and mapping that to the low-level source code [2].
Other theories suggest that understanding is built “bottom-up”, by
reading source code and then mentally chunking the statements into
higher-level abstractions. These abstractions are grouped until a
high-level understanding of the program is attained [22]. More re-
cent studies show that programmers use a hybrid approach and fre-
quently switch between various comprehension strategies [31].

The diversity of these cognitive models is is not surprising, when
one considers the varied characteristics of maintainers, programs to
be understood, and the goals driving the comprehension tasks [28].
Nevertheless, all the cognitive models agree that understanding is
achieved by exploring program information, such as code or doc-
umentation, and assimilating that information into existing knowl-
edge about the program. For many programmers, the source code
of the software system is the most trusted form of documentation.
Many software visualization tools provide access to the code, but in
many cases the program code is not well integrated with higher-level
architectural views. According to the integrated model of com-
prehension [31], programmers frequently switch between top-down
and bottom-up approaches. Therefore, a programmer should be able
to rapidly switch between a high-level view of the software and
lower-level source code as they strive to understand the program.
Hence, to effectively aid program comprehension, a tool must sup-
port a wide variety of comprehension strategies through its visual-
ization and navigation approaches.

For software exploration, graphs are often used for representing
and documenting software structures where nodes in the graph cor-
respond to software artifacts such as functions, data types, and sub-
systems, and directed arcs correspond to function calls, data depen-
dencies, and containment relationships. However, as the complexity
of software systems increase, so too do their presentationsas graphs.
The useful information conveyed by these graphs can be increased
through a variety of techniques. Filtering non-essential nodes and
arcs can reduce the amount of visual clutter and consequently im-
prove the readability of the graph. Graph abstraction reduces com-
plexity by collapsing subgraphs of related nodes and arcs into sin-
gle nodes. The layout of a graph (the relative sizes and positions of
nodes and arcs) also strongly affects readability.

Additional techniques are needed to help programmers visual-

ize and explore the larger, more complex graphs typical of legacy
software systems. Some tools use a multiple window approach,
where each window displays a portion of the graph. Other tools
use a pan+zoom metaphor for browsing the graph at various levels
of detail. Some visualization tools employ a fisheye-view or con-
text+detail approach, where critical information is displayed larger
than less relevant information. All of these techniques have been
applied to the task of visualizing software [25].

For exploring software, the Simple Hierarchical Multi-
Perspective (SHriMP) visualization technique proposes that
an integrated approach which combines both pan+zoom and
fisheye-view approaches is preferable for supporting a variety
of comprehension strategies. Filtering, abstraction, and layout
algorithms are also used to better convey important structural infor-
mation in the graph. Nested graphs display hierarchical structures
such as containment relationships and graph abstractions. For
example, related software artifacts may be collapsed into a single
subsystem node, with nesting to show a containment relationship
between this node and the original artifacts.

Moreover in SHriMP, the source code is directly accessible and
tightly integrated within the visual presentation. A programmer can
browse the code by magnifying a node of interest until the corre-
sponding code is visible within the node. This approach presents
the detailed code simultaneously within the additional context of
the overall, structural diagram. The program code can be further
explored by following hypertext links in the code or by navigating
within the diagram using various pan+zoom techniques.

The rest of this paper is organized as follows. Section 2 briefly
reviews techniques for visually presenting complex information
spaces and discusses their suitability for visualizing static software
structures. Section 3 describes the extended interface for SHriMP,
an integrated visualization technique applied to exploring software
structures and browsing source code. Section 4 highlights important
issues addressed by this visualization technique and outlines areas
for future research. The final section concludes the paper.

2 Dealing with Large Graphs

This section discusses the suitability of several techniques for rep-
resenting graphs of large, complex software systems.

2.1 Multiple Views

For a large software system, the corresponding graph may con-
tain many thousands of nodes and arcs. Some tools partition the
graph into pieces and display each piece in a separate window [25].
These windows may be cascaded or arranged so that the user can
selectively choose which part of the graph to examine further. Fre-
quently, an overview or map is provided to show a less detailed,
global view of the entire graph. For many applications, this multiple
view approach is less than satisfactory since the user has the difficult
task of accurately conceptualizing and integrating the implicit rela-
tionships among the contents of the individual windows.

2.2 Single View: Pan+Zoom

Several approachesdisplay large graphs using a single, unified view.
In a pan+zoom view, the user may pan the view using scroll bars or
by dragging the mouse over the view. Also, the user may explore
the graph in varying detail by zooming in (enlarging) or zooming
out (shrinking) the view. Pad++ [1] uses highly optimized graph-
ics to achieve smooth panning and zooming, making out-of-view
parts of the graph quickly accessible. A pan+zoom web browser
was recently developed within Pad++ [7]. One problem with the
pan+zoom technique is that a user can only enlarge one area of inter-
est at a time in a given view. For program understanding, it is often

necessary to look at several disjoint parts of the software in detail
at the same time, since the code relating to a particular algorithm is
often fragmented [23].

2.3 Single View: Context+Detail

Several approaches have been devised to present detailed informa-
tion while also providing the user with important contextual cues.
The term fisheye view, coined by Furnas [10], is commonly used to
describe views that simultaneously display both context and detail.
A fisheye lens has the distorting optical effect that objects closer to
the center of the view appear increasingly larger. Furnas’ original
technique applied a degree of interest function to two measures for
each object: its a priori relevance to the user and its distance from
a focal point. When applied, this function produces a set of priority
values. Objects with priorities below a certain threshold are filtered
from the view. Furnas applied these ideas to display program source
code and to display calendars.

The Treemap [13], Interactive Graph Layout [12] and Layout In-
dependent Fisheye View [15] systems use a static, context+detail
display technique. There is no stability in the graph layouts gener-
ated by these systems. A reissued layout might change dramatically
due to a small change in requested node sizes. For software visual-
ization, the graph layout is often designed to assist the programmer
in building a mental map of the program. Drastically changing the
whole layout due to a change of focus would disturb the program-
mer’s mental map.

Dynamic context+detail display techniques allow the user to
change the area(s) of interest interactively and incrementally. For
example, SemNet was developed for exploring and modifying large
information spaces [8]. SemNet uses three-point perspective to cre-
ate 3-D fisheye views. An advantageof 3-D drawing is that the view
can be rotated until arcs of interest do not overlap. However, these
graph displays tend to be cluttered and unfortunately impede the un-
derstanding of the structure [19].

Sarkar and Brown extended Furnas’ technique to create interac-
tive fisheye views of graphs [21]. Points of greater interest are mag-
nified and points of lesser interest are demagnified by distorting the
space around the focal point. Nodes further away from the focal
point appear increasingly smaller. For software visualization, how-
ever, this use of distance to derive interest or importance may not be
entirely suitable. A related, more sophisticated approach (3DPS) is
described in [3].

The Continuous Zoom algorithm by Dill et al. [6], is suitable for
interactively displaying hierarchically-organized, two-dimensional
networks. This approach allows users to view and navigate nested
graphs by expanding and shrinking nodes. The underlying algo-
rithm uniformly resizes nodes to provide space for focal points and
uses a budgeting process to distribute space among the nodes in the
network. However, this algorithm adversely distorts certain layouts
useful for visualizing software structures, such as spring [9] and tree
[18] layouts. The SHriMP fisheye algorithm, first presented in [26],
can adjust an existing layout while preserving various constraints.

The next section describes the SHriMP technique, which in-
tegrates pan+zoom and context+detail approaches for browsing
nested graphs.

3 SHriMP

This section presents some background on the implementation of
the SHriMP visualization technique and describes its user interface
features for navigating and browsing software.

(a) (b) (c)

Figure 1: (a) This figure shows a single node representing the Hangman program. (b) The user has opened the root node of the program to
display the next level in the program hierarchy. (c) Further detail is exposed by opening additional nodes.

3.1 Nested graphs

The SHriMP visualization technique employs a nested-graph for-
malism [11] to present the structure of a software system. A nested
graph has composite nodes that contain other nodes, thus forming
a hierarchical structure. These composite nodes typically represent
software subsystems (perhaps discovered during reverse engineer-
ing). In a nested graph, a composite arc represents one or more arcs
between lower-level nodes in the hierarchy. Composite arcs can be
selected and opened to display the lower-level, constituent arcs they
represent.

Figure 1 shows a series of views at various levels of detail in a C
program that implements a Hangman game. In Fig. 1(a), a single
node is displayed. This node is an abstract representation of the en-
tire Hangman program. In Fig. 1(b), this node is opened to reveal
the next level in the software hierarchy. Further detail is exposed by
opening additional nodes in Fig. 1(c).

Composite nodes are drawn in grey and have a sunken or raised
effect to indicate if they are open or closed, respectively. Leaf nodes
are colored according to the type of software artifact represented
(e.g., functions (blue), data types (orange), variables (green) and
files (pink)). A node may be manually positioned in the canvas, con-
strained by the boundaries of its parent node. Automatic layout al-
gorithms can alternatively be applied to each of the subgraphs, in-
cluding: grid (nodes are positioned in a rectangular matrix), spring
[9], tree [18], and Sugiyama [29] (see Fig. 2).

3.2 Magnifying nodes of interest

SHriMP integrates context+detail and pan+zoom approaches for
magnifying nodes of interest. The context+detail approach uses the
SHriMP fisheye-view algorithm [26], which preserves constraints
such as orthogonality and proximity among nodes as they are in-
dividually resized. The SHriMP fisheye view algorithm is unique
in that it supports various layout adjustment strategies for nested
graphs so that a distorted graph will preserve specific constraints and
thus the user’s mental map of the original layout [14] (see Fig. 2).

Figure 3(a) shows how the GamePlay subsystem is magnified
in the Hangman program by concurrently shrinking the rest of the
graph to allocate more space to the GamePlay node. Several nodes
of interest can be selected and magnified by shrinking the remainder
of the graph to allocate more space to these nodes.

The pan+zoom approach allows the user to pan and zoom around
a single view. To show more detail for a node of interest, the user

selects the node and zooms in until the required level of detail is vis-
ible. Figure 3(b) shows the GamePlay subsystem after zooming in
until the node fills the available screen area.

The SHriMP fisheye-view approach has the advantage of show-
ing both context and detail, but depending on the given task and
required information, contextual cues may not always be needed.
The pan+zoom approach, however, only supports one focal point.
A programmer often needs to browse several interacting subsystems
concurrently in a single view. Here, the SHriMP fisheye-view ap-
proach would be more suitable for magnifying several focal points.

A user browsing a software hierarchy might combine these two
approaches to magnify nodes of interest. For example, in Fig. 3(b)
the GamePlay subsystem node is magnified by zooming in (with-
out context) but three of its children nodes are sized larger than their
siblings using the SHriMP fisheye algorithm.

3.3 Browsing source code

With SHriMP, the user can easily access the source code for a pro-
gram. Each leaf node directly corresponds to a chunk of code in the
program. A user can browse this code using any of three methods.
In the first method, a separate text editor window may be opened to
display the corresponding source file and code for a selected node.
The other two methods represent the code as hypertext [5] with
function calls, data type references, and variable references repre-
sented as hyperlinks. The second method uses the user’s preferred
web browser, such as Netscape Navigator, for exploring the hyper-
text code. The third method embeds the hypertext code inside the
nodes so that the source code can then be browsed within the con-
text of the software structure view.

In addition to embedding the code inside nodes, SHriMP in-
tegrates the hypertext link-following metaphor (at the code level)
with animated panning and zooming motions over the nested graph
(at the structural level). Consequently, following a link to an-
other function pans and zooms the view so that this function’s code
is presented within its node. By seamlessly combining code and
structural browsing, the SHriMP interface supports and encourages
switching among various comprehension strategies. The hyperlinks
also provide complementary pathways for navigation beyond fol-
lowing the nested graph structure.

Figure 4(a) displays the playgame function as a focal point
with its code visible. The playgame function calls endgame (see
the last line in the body of playgame). If the user clicks on the
endgame hyperlink, the tool animates the view so that both nodes

Original
Layout

Preserving
Orthogonalities

Preserving
Proximities

Hybrid
Strategies

Grid

elementcreate elementnext

listnext

elementinfo

listcreateelementsetnext

element

mylistprint elementsetnext

elementcreate

mylistprint

elementinfo

elementnext

elementinfo

elementnext

elementelementcreate

element listcreate

elementsetnextlistinsert

elementnext

elementinfo mylistprintelementsetnextelement

listinit main listid listfirst

list

listfirst listinit

listid list main

listcreatemainelementsetnextelementnextlistid

listinitlistfirstelementelementinfoelementelementcreate

elementinfoelementsetnextelementnextlistcreateelement

listnextelementcreateelementinfoelementsetnextlistinsert

listfirstlistidmylistprintmainelementnextlistinit

elementnexmylistprintelementsetnextelementinfoelementcreateelement

mylistprint

list

list listcreatemainelementsetnextelementnext

listid

listinit

listfirstelementelementinfo

element

elementcreate

elementinfoelementsetnextelementnextlistcreateelement

listnext

elementcreateelementinfo

elementsetnext

listinsert

listfirstlistidmylistprintmainelementnext

listinit

elementnextmylistprintelementsetnextelementinfoelementcreateelement

mylistprint

list

list

Spring

BaseSystem BaseSystem BaseSystem

Tree

collapse collapse collapse collapse

Sugiyama

mylistprint

listidlistinitelementsetnextelementsetnextelementinfo

element

listfirst

elementnext

elementsetnext

main

listnext

elementcreate listcreate listinsert

newnewnew new

new new

src

list

listidlistinitelementsetnextelementsetnextelementinfo

element

listfirst

elementnext

elementsetnext

main

listnext

elementcreate listcreate listinsert

newnewnew new

new new

mylistprint

src

list

listid
listinit

elementsetnextelementsetnextelementinfo

element

listfirst

elementnext

elementsetnext

main

listnext

elementcreate listcreate listinsert

new

newnew
new

new new

mylistprint

src

list

listidlistinitelementsetnextelementsetnextelementinfo

element

listfirst

elementnext

elementsetnext

main

listnext

elementcreate listcreate listinsert

newnewnew new

new new

mylistprint

src

list

Figure 2: This figure demonstrates how the SHriMP fisheye view algorithm has different strategies to adjust graph layouts while preserving
the user’s mental map. The first column shows several undistorted graph layouts. The second column shows the effects of enlarging nodes
using a strategy of this fisheye-view algorithm which preserves orthogonal relationships among nodes in the graph. This method is well suited
to the grid layout, but badly distorts the other layouts. The third column shows a different strategy which preserves clusters in the graph layout.
This strategy is more suited to the spring layout which groups related nodes. The final column shows some hybrid strategies which are suitable
for tree layouts.

(a) (b)

Figure 3: (a) The GamePlay subsystem in the Hangman program hierarchy has been magnified using the SHriMP fisheye view algorithm.
(See color plate 1.) (b) GamePlay has been magnified further, removing most of the context from the view.

are visible in Fig. 4(b). This intermediate step is important to avoid
disorienting the user as the view is panned and zoomed from one
node to another. SHriMP then animates the view so that the code
for endgame is fully visible, as in Fig. 4(c). To see the code more
clearly, the user can fully zoom the endgame node as shown in
Fig. 4(d). Displaying the code inside the nodes and animating the
view as the focus is changedshould reduce lost in spaceeffects often
encountered by programmers when browsing the code of complex
software systems.

3.4 Implementation

The first prototype of the SHriMP interface [24] was implemented
in Tcl/Tk [16]. Tcl/Tk is a scripting language and user interface li-
brary useful for rapidly prototyping graphical interfaces. However,
its graphics capabilities are not optimized for efficiently displaying
the large graphs typical of software systems.

The second prototype has been implemented using Pad++ [1],
a graphics extension for Tcl/Tk. Pad++ is a substrate for build-
ing multiscale, dynamic user interfaces. Also, Pad++ is highly
optimized for efficiently displaying large numbers of objects and
smoothly animating the motions of panning and zooming. For
SHriMP, the nested graph views and fisheye-view algorithm are im-
plemented in Tcl/Tk using the Pad++ widgets. Pad++ also supports
HTML items in its canvas. This feature was used to display source
code inside the nodes. The Pad++ panning and zooming features are
used extensively in SHriMP.

Two user studies have been conducted to evaluate the strengths
and weaknesses of the SHriMP interface. Some pertinent observa-
tions from these studies are discussed next.

4 Discussion

The SHriMP technique was developed as an alternative visualiza-
tion method for Rigi, a tool for reverse engineering developed at
the University of Victoria [24]. Rigi displays software hierarchies

as graphs using a multiple window approach. We are currently con-
ducting some user experiments to compare the SHriMP interface
with the multiple-window interface provided by Rigi.

In an early experiment [27], 12 subjects were observed while
solving simple program understanding tasks using three different in-
terfaces: Rigi, SHriMP, and a non-graphical, command-line inter-
face (consisting of a vi editor and grep). Each subject tested the
three interfaces in order: command-line, then Rigi, then SHriMP.
Three test programs written in C of varying complexity were, for
each user, randomly assigned to the interfaces.

The command-line interface was used very effectively for the
smaller programs. Many of the subjects found the multiple win-
dows in Rigi to be confusing and were misled by hidden, implicit
dependencies among the disjoint windows. However, for the larger
programs, many users were overwhelmed with the large amount of
information presented in the SHriMP views. Results from a usabil-
ity questionnaire showed that the users preferred SHriMP, but this
may have been due to the biased and fixed test order of the three
interfaces. At the time of this experiment, the Rigi and SHriMP in-
terfaces were still prototypes.

In a second experiment, 30 subjects (graduate and undergradu-
ate students in computer science at the University of Victoria) were
observed while solving more realistic software maintenance tasks.
The studied tools were Rigi, SHriMP, and SNiFF+ (an integrated de-
velopment environment from TakeFive Software). This experiment
is described in more detail in [28].

Each of the 30 subjects (of a particular level of computing expe-
rience) was randomly assigned to only one interface, allowing time
for adequate training and practice tasks before the formal tasks. Test
programs of increasing complexity were used for the three sets of
tasks, culminating with a 1700 line Monopoly game program for the
formal tasks. A typical formal task asked the subject to determine
the appropriate changesneeded to implement a new Monopoly rule.

To prepare the experiment, a parser was used to extract low-level
software artifacts and relationships from the test programs. Using
the Rigi graph editor, one of the authors looked for meaningful ab-

(a) (b)

(c) (d)

Figure 4: (a) The playgame function node is magnified so that its source code is readable. The user selects the endgame hyperlink to see the
called function’s code. (b) As an animated intermediate step, the SHriMP view shows both the playgame and endgame nodes. (c) Finally,
the SHriMP view animates so that the endgame function’s code is readable. (d) To see endgame more clearly, the user can zoom in so that
the node fills the available screen area. (See color plates 2-5.)

stractions and composed a layered, subsystem hierarchy. To effec-
tively assist program understanding, it was critical that an easily un-
derstood set of subsystems be built, that the hierarchy be organized
to support navigation, and that meaningful, easy-to-recognize sub-
system names be defined. For example, in Monopoly, three sub-
system nodes were called Play, Mortgage and Buying & Selling.
The creation of meaningful subsystems greatly depends on the use
of application and programming domain knowledge. In the exper-
iment, the same hierarchies were used for both Rigi and SHriMP.
The presentations offered by these tools can help convey a mental
map of the program design. Hypertext files of code fragments were
also generated.

In this experiment, we hypothesized that a given interface would
affect the comprehension strategy undertaken by a subject to com-
plete an assigned task. For SNiFF+, we expected that its predomi-
nantly textual interface would encourage a bottom-up comprehen-
sion strategy, where the code is read in some detail before draw-
ing any conclusions about the global program structure. For Rigi,
we expected that it would promote a top-down strategy, where the
global subsystem structure would be understood before browsing
the code in detail. Finally, we expected that the SHriMP interface
would support frequent switching between top-down and bottom-
up approaches due to the seamless integration of source code and
high-level graphical views. Our observations do seem to support
this hypothesis, but a detailed analysis of the videotaped sessions
is needed.

In the experiment, we also wanted to compare the fisheye-view
(context+detail) and pan+zoom techniques used in SHriMP. The
fisheye-view technique was not used as much as pan+zoom, prob-
ably because of implementation problems in the interface. At the
time of this experiment, the SHriMP interface did not support ap-
plying the fisheye-view algorithm to multiple focal points. Some
subjects mentioned (in a post study interview) that they would have
liked to use this feature to magnify multiple subsystem nodes to ex-
amine their interactions. Several subjects did use the fisheye-view
technique on a single subsystem node, to further explore the inter-
actions between it and the rest of the software.

We provided one-way access from a SHriMP view to Netscape
Navigator for browsing hypertext source code, but Navigator was
seldom used even though it was a more familiar and robust tool than
the SHriMP code browser. This may have been due to the lack of
a tight, two-way integration between Navigator and SHriMP. Many
subjects mentioned that they liked the contextual feedbackfrom see-
ing the code embedded within the nodes as it helped them relate the
code to the graphical view of the subsystem hierarchy. This feed-
back helped them build a mental map of the structure of the program
as they browsed the code.

Another interesting observation was that previously opened sub-
systems no longer in focus acted as thumbnail images to provide re-
trieval cues (as a kind of history and/or path-marking feature). Sev-
eral subjects relied on these visual cues to help retrieve previously
explored subsystems.

The biggest problem observed with SHriMP was in manag-
ing complexity in the view, especially when composite arcs were
opened. Figure 5 shows the visual complexity that arose after open-
ing several composite arcs. Some subjects commented that arcs
should be hidden by default and be shown only upon request. Oth-
ers suggested that filtering mechanisms would have been helpful, so
that irrelevant arcs could be hidden. In general, the SHriMP inter-
face was used quite effectively, although further analysis of the ex-
perimental data is needed.

The SHriMP implementation is currently being enhanced to al-
low the user to display or hide arcs for a set of selected nodes. This
poses an interesting problem in general, with many user interface
issues to be considered. Some algorithms have been devised for au-
tomatically computing layouts of nested graphs with composite arcs

Figure 5: Information overload impeded the use of SHriMP due to
a lack of filtering mechanisms.

[20], but few tools have addressed the issue of interactively brows-
ing these graphs.

Of key importance for program comprehension is the ability to
search for keywords in the code and documentation. Observational
studies of programmers have clearly shown that making hypothe-
ses and searching for cues to verify or reject these hypotheses are
the main activities in program comprehension [23]. Integrating an
effective search engine into SHriMP will also raise some interesting
design issues.

5 Conclusion

This paper described an integrated approach for presenting software
structure and code that combines both pan+zoom and fisheye-view
visualization metaphors in a single view. The SHriMP approachdis-
plays software architectural diagrams using nested graphs, convey-
ing containment relationships and graph abstractions. High-level
views of the software structure provide a guide through which the
user can directly manipulate the view to access pertinent details.
The SHriMP interface embeds source code directly inside the nodes
and integrates the hypertext link-following metaphor (at the code
level) with animated panning and zooming motions over the nested
graph (at the structural level). By seamlessly combining code and
structural browsing, the SHriMP interface supports and encourages
switching between bottom-up and top-down program comprehen-
sion strategies.

The SHriMP tool is currently being evaluated in several user
studies. Early observations from these studies were discussed in this
paper. As the interface of SHriMP evolves, future experiments will
evaluate its effectiveness. Through this iterative cycle of design, im-
plementation and testing, we are working towards a more effective
tool for software exploration.

Acknowledgements

We wish to thank Jim McDaniel for writing a tool to generate
HTML’ized code fragments from C source code. We are also

grateful to Ben Bederson for suggesting how to use Pad++ within
SHriMP more efficiently.

References

[1] B.B. Bederson and J.D. Hollan. Pad++: A zooming graphical
interface for exploring alternate interface physics. In Proceed-
ings of ACM UIST’94, (Marina del Rey, California), pages 17–
26, November, 1994.

[2] Ruven Brooks. Towards a theory of the comprehension of
computer programs. International Journal of Man-Machine
Studies, 18:543–554, 1983.

[3] M. S. T. Carpendale, D. J. Cowperthwaite, and F. D. Fracchia.
3-dimensional pliable surfaces: For effective presentation of
visual information. In Proceedings of ACM UIST’95, pages
217–227, 1995.

[4] E.J. Chikofsky and J.H. Cross II. Reverse engineering and de-
sign recovery: A taxonomy. IEEE Software, pages13–17, Jan-
uary 1990.

[5] J. Conklin. Hypertext: An introduction and survey. IEEE
Computer, 20(9):17–41, September 1987.

[6] J. Dill, L. Bartram, A. Ho, and F. Henigman. A continuously
variable zoom for navigating large hierarchical networks. In
Proceedings of the 1994 IEEE Conference on Systems, Man
and Cybernetics, pages 386–390, October 1994.

[7] B.B. Bederson et al. A zooming web browser. In Human Fac-
tors in Web Development. To appear. 1997.

[8] K.M. Fairchild, S.E. Poltrock, and G.W. Furnas. SemNet:
Three-dimensional graphic representations of large knowl-
edge bases. In Raymonde Guindon, editor, Cognitive Science
and its Applications for Human-Computer Interaction, pages
201–233. Lawrence Erlbaum Associates, Publishers, 1988.

[9] T. Fruchtermann and E. Reingold. Graph drawing by force-
directed placement. Technical Report UIUC CDS-R-90-1609,
Department of Computer Science, University of Illinois at
Urbana-Champaign, 1990.

[10] G.W. Furnas. Generalized fisheye views. In Proceedings of
ACM CHI’86, (Boston, MA), pages 16–23, April 1986.

[11] D. Harel. On visual formalisms. Communications of the ACM,
31(5):514–530, May 1988.

[12] T.R. Henry and S.E. Hudson. Interactive graph layout. In Pro-
ceedings of UIST ’91, Hilton Head, South Carolina, pages 55–
64, November 1991.

[13] B. Johnson and B. Shneiderman. Tree-maps: A space-filling
approach to the visualization of hierarchical information struc-
tures. In Proceedings of Visualization ’91, (San Diego, Cali-
fornia), pages 284–291, October 1991.

[14] K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout adjust-
ment and the mental map. Journal of Visual Languages and
Comput., 6(2):183–210, 1995.

[15] E.G. Noik. Layout-independent fisheye views of nested
graphs. In VL’93: IEEE Symposium on Visual Languages,
(Bergen, Norway, pages 336–341, August 1993.

[16] J. K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley,
1994.

[17] B. A. Price, R. M. Baecker, and I. S. Small. A principled tax-
onomy of software visualization. Journalof Visual Languages
and Computing, June 1993.

[18] E.M. Reingold and J.S. Tilford. Tidier drawing of trees.
IEEE Transactions on Software Engineering, SE-7(2):223–
228, March 1981.

[19] G.G. Robertson, J.D. Mackinlay, and S.K. Card. Cone
trees: Animated 3d visualizations of hierarchical information.
In Proceedings of ACM CHI’91, (New Orleans,Louisiana),
pages 189–194, April 1991.

[20] G. Sander. Graph layout for applications in compiler construc-
tion. Technical Report A/01/96, Universität des Saarlandes,
February 27, 1996.

[21] M. Sarkar and M.H. Brown. Graphical fisheye views. Com-
munications of the ACM, 37(12):73–84, December, 1994.

[22] B. Shneiderman. Software Psychology: Human Factors in
Computer and Information Systems. Winthrop Publishers,
Inc., 1980.

[23] E. Soloway, J. Pinto, S. Letovsky, D. Littman, and R. Lam-
pert. Designing documentation to compensate for delocalized
plans. Communications of the ACM, 31(11):1259–1267,1988.

[24] M.-A. D. Storey, H.A. Müller, and K. Wong. Manipulating and
documenting software structures. In P. Eades and K. Zhang,
editors, Software Visualization, pages 244–263. World Scien-
tific Publishing Co., 1996.

[25] M.-A.D. Storey, F.D. Fracchia, and H.A. Müller. Cognitive
design elements to support the construction of a mental model
during software visualization. In Proceedings of the 5th Inter-
national Workshop on Program Comprehension (IWPC’97),
Dearborn, Michigan, pages 17–28, May 1997.

[26] M.-A.D. Storey and H.A. Müller. Graph layout adjustment
strategies. In Proceedings of Graph Drawing 1995, (Passau,
Germany, pages 487–499. Springer Verlag, September 1995.
Lecture Notes in Computer Science.

[27] M.-A.D. Storey, K. Wong, P. Fong, D. Hooper, K. Hopkins,
and H.A. Müller. On designing an experiment to evaluate a
reverse engineering tool. In Proceedings of the 3rd Working
Conference on Reverse Engineering (WCRE96), Monterey,
California, pages 31–40, November 1996.

[28] M.-A.D. Storey, K. Wong, and H.A. Müller. How do program
understanding tools affect how programmers understand pro-
grams. To appear in the Proceedings of the 4th Working Con-
ferenceon ReverseEngineering (WCRE97), Amsterdam, Hol-
land, 1997.

[29] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual
understanding of hierarchical systems. IEEE Transactions on
Systems, Man, and Cybernetics, 11(4):109–125, 1981.

[30] S.R. Tilley, S. Paul, and D.B. Smith. Towards a framework
for program understanding. In Proceedings of the 4th Inter-
national Workshop on Program Comprehension (IWPC’96),
Berlin, Germany, pages 19–28, March 1996.

[31] A. von Mayrhauser and A.M. Vans. Program comprehension
during software maintenance and evolution. IEEE Computer,
pages 44–55, August 1995.

