
Understanding Software Systems

Using Reverse Engineering Technology

Perspectives from the Rigi Projecty

Hausi A. M�uller Scott R. Tilley Kenny Wong

Department of Computer Science, University of Victoria
P.O. Box 3055, Victoria, BC, Canada V8W 3P6

Tel: (604) 721-7294, Fax: (604) 721-7292
E-mail: fhausi, stilley, kenwg@csr.uvic.ca

Abstract

Software engineering research has focused
mainly on software construction and has ne-
glected software maintenance and evolution.
Proposed is a shift in research from synthesis
to analysis. Reverse engineering is introduced
as a possible solution to program understanding
and software analysis. Presented is reverse en-
gineering technology developed as part of the
Rigi project. The Rigi approach involves the
identi�cation of software artifacts in the subject
system and the aggregation of these artifacts to
form more abstract architectural models. Re-
ported are some analyses on the source code of
SQL/DS, performed by the authors while visit-
ing the Program Understanding project at the
IBM Centre for Advanced Studies in Toronto.

Keywords: Legacy software, software evolu-
tion, program understanding, reverse engineer-
ing.

yThis work was supported in part by the British

Columbia Advanced Systems Institute, IBM Canada

Ltd., the IBM Centre for Advanced Studies, the IRIS

Federal Centres of Excellence, the Natural Sciences and

Engineering Research Council of Canada, the Science

Council of British Columbia, and the University of

Victoria.

Reprinted from Proceedings of CASCON '93,

(Toronto, Ontario; October 25-28, 1993), pages

217-226.

1 Introduction

Suppose we could turn back time to 1968|to
the �rst software engineering conference held
in Garmisch, Germany. This NATO confer-
ence, which was held in response to the per-
ceived software crisis, introduced the term soft-

ware engineering and signi�cantly inuenced
research and practice in the years to follow.
What advice would we give to those software
pioneers, given the software engineering back-
ground and experience we have today?

These software pioneers did not anticipate
that their software, constructed in the 1960's
and early 1970's, would still be used and mod-
i�ed twenty-�ve years later. Today, these sys-
tems are often referred to as legacy or heritage
systems. They include telephone switching sys-
tems, banking systems, health information sys-
tems, avionics systems, and many computer
vendor products. In switching systems, new
functionality is added periodically to reect the
latest market needs. Banks have to update
their systems regularly to implement new or
changed business rules and tax laws. Health in-
formation systems must adapt to rapidly chang-
ing technology and increased demands. Com-
puter vendors are often committed to support-
ing their products (for example, database man-
agement systems) inde�nitely, regardless of age.

Such legacy systems cannot be replaced
without re-living their entire history. They
embody substantial corporate knowledge such
as requirements, design decisions, and business
rules that have evolved over many years and



are di�cult to obtain elsewhere. This knowl-
edge constitutes signi�cant corporate assets to-
talling billions of dollars. As a result, long-term
software maintenance and evolution are as im-
portant as software construction|especially if
we consider the economic impact of these sys-
tems.

2 Analysis and synthesis

Our main advice to the software pioneers of
1968 would be to carefully balance software

analysis and software construction e�orts in
both research and education.

Over the past three decades, software engi-
neering research has focused mainly on software
construction and has neglected software main-
tenance and evolution. For example, numerous
successful tools and methodologies have been
developed for the early phases of the software
life cycle, including requirement speci�cations,
design methodologies, programming languages,
and programming environments. As such, there
has arisen a dramatic imbalance in software en-
gineering education, for both academia and in-
dustry, of favoring original program, algorithm,
and data structure construction.

Computer science and computer engineer-
ing programs prepare future software engineers
with a background that encourages fresh cre-
ation or synthesis. Concepts such as architec-
ture, consistency and completeness, e�ciency,
robustness, and abstraction are usually taught
with a bias toward synthesis, even though these
concepts are equally applicable and relevant to
analysis. The study of real-world software sys-
tems is often overlooked. Instructors rarely pro-
vide assignments that model the normal mode
of operation in industry: analyzing, under-
standing, and building upon existing systems.
Contrast this situation with electrical or civil
engineering education, where the study of ex-
isting systems and architectures constitutes a
major component of the curriculum.

Knowledge of architectural concepts in large
software systems is key to understanding legacy
software and to designing new software. These
concepts include: subsystem structures; layered
structures; aggregation, generalization, special-
ization, and inheritance hierarchies; resource-

ow graphs; component and dependency classi-
�cation; event handling strategies; pipes and �l-
ters; user interface separation; and distributed
and client-server architectures. The importance
of architecture is now recognized; courses on the
foundations of software architecture [1] have re-
cently emerged at several universities.

The bias toward synthesis has also resulted
in a lack of tools for the software maintainer.
To correct the imbalance, a shift in research
from synthesis to analysis is needed. This
would allow the software maintenance and evo-
lution community to catch up. Once the reper-
toire of tools and methodologies for analysis be-
comes as re�ned as that for synthesis, software
maintenance and evolution will become more
tractable.

In 1990 the Computer Science Technology
Board of the U.S. proposed a research agenda
for software engineering [2]. Their report con-
cluded that progress in developing complex
software systems was hampered by di�ering
perspectives and experiences of the research
community in academia and of software en-
gineering practitioners in industry. The re-
port recommended nurturing a collaboration
between academia and industry, and legitimiz-
ing academic exploration of complex software
systems directly in government and industry.
Software engineering researchers should test
and validate their ideas on large, real-world
software systems. An excellent example of pro-
viding such arrangements in Canada is the IBM
Centre for Advanced Studies (CAS) in Toronto,
where there is a Program Understanding (PU)
project.

3 Program understanding

via reverse engineering

Programmers have become part histo-
rian, part detective, and part clairvoy-
ant.

| T.A. Corbi, IBM

One of the most promising approaches to the
problem of software evolution is program un-

derstanding technology. It has been estimated



that �fty to ninety percent of evolution work
is devoted to program comprehension or under-
standing [3]. Programmers use programming
knowledge, domain knowledge, and comprehen-
sion strategies when trying to understand a pro-
gram. For example, one might extract syntac-
tic knowledge from the source code and rely on
programming knowledge to form semantic ab-
stractions. Brooks's early work on the theory of
domain bridging [4, 5, 6] describes the program-
ming process as one of constructing mappings
from a problem domain to an implementation
domain, possibly through multiple levels. Pro-
gram understanding then involves reconstruct-
ing part or all of these mappings. Moreover,
the programming process is a cognitive one in-
volving the assembly of programming plans|
implementation techniques that realize goals in
another domain. Thus, program understand-
ing also tries to pattern match between a set of
known plans (or mental models) and the source
code of the subject software.

For large legacy systems, the manual match-
ing of such plans is di�cult. One way of aug-
menting the program understanding process is
through reverse engineering. Although there
are many forms of reverse engineering, the com-
mon goal is to extract information from exist-
ing software systems. This knowledge can then
be used to improve subsequent development,
ease maintenance and re-engineering, and aid
project management [7].

3.1 Reverse engineering process

The process of reverse engineering a subject
system involves the identi�cation of the sys-
tem's current components and their dependen-
cies followed by the extraction of system ab-
stractions and design information. During this
process the source code is not altered, although
additional information about it is generated. In
contrast, the process of re-engineering typically
consists of a reverse engineering phase followed
by a forward engineering or re-implementation
phase that alters the subject system.

There is a large number of commercial re-
verse and re-engineering tools available; [8] lists
over one hundred such packages. Most com-
mercial systems focus on source-code analysis
and simple code restructuring, and use the most

common form of reverse engineering: informa-
tion abstraction via program analysis.

3.2 Reverse engineering

approaches

Reverse engineering consists of many diverse
approaches, including: formal transformations
[9], meaning-preserving restructuring [10], pat-
tern recognition [11], function abstraction [12],
information abstraction [13, 14], maverick iden-
ti�cation [15], graph queries [16], and reuse-
oriented methods [17].

Three speci�c approaches are briey de-
scribed below. Each approach is supported by
one (or more) research groups in the PU project
at CAS. One goal of this project is to exploit all
three to produce a more comprehensive reverse
engineering toolset.

3.2.1 Defect �ltering

The work by Buss and Henshaw at IBM CAS
explores design recovery and knowledge re-
engineering of large legacy software, with an
emphasis on software written for the SQL/DS1

product. SQL/DS is typical of many legacy sys-
tems: old, highly modi�ed, popular, success-
ful, and large. Higher quality standards and
increased productivity goals motivated this ex-
ploration.

Their work in the PU project is mainly con-
cerned with defect �ltering in SQL/DS [18] and
other IBM products. They use the commer-
cial Software Re�nery product (REFINE) [19]
to parse the source code into a form suitable
for analysis. This work applies the experience
of domain experts and the results of causal
analysis to create REFINE \rules" to �nd cer-
tain families of defects in the subject software.
These defects include programming language
violations (overloaded keywords, poor data typ-
ing), implementation domain errors (data cou-
pling, addressability), and application domain
errors (coding standards, business rules).

1SQL/DS is a trademark of the International Busis-

ness Machines Corporation.



3.2.2 Pattern matching

Four research groups a�liated with the IBM
CAS PU project focus on pattern-matching ap-
proaches at various levels: textual (characters),
lexical (token stream), syntactic (parse tree),
semantic (meaning), and structural (architec-
ture).

Johnson and Gentleman study redundancy
at the textual level, with some work at the lex-
ical level. A number of uses are relevant to
the SQL/DS product: looking for code reused
by cut-and-paste, building a simpli�ed model
for macro processing based on actual use, and
providing overviews of information content in
absolute or relative (version or variant) terms.

Paul and Prakash use programming language
constructs as a type of plan in the SCRUPLE
system [20]. Instead of looking for low-level tex-
tual patterns or very high-level semantic con-
structs, SCRUPLE looks for code clich�es. The
clich�e pattern is user-de�ned. This approach
is a natural progression from simple textual
scanning techniques; instead of using charac-
ter strings as the search criteria, programming-
language constructs are used.

The work by Kontogiannis concerns seman-
tic or behavioral pattern-matching [21]. A
transformational approach is used to simplify
syntactic programming structures and expres-
sions, such as while loops, by translating them
to simpler canonical forms. A canonical form
is a semantic abstraction that improves under-
standing while providing a uni�ed representa-
tion for similar constructs. These canonical
forms can reduce the number of plans that need
to be stored.

Finally, structural patterns are investigated
as part of the Rigi2 [22] project.

3.2.3 Structural redocumentation

Software structure refers to a collection of arti-
facts that software engineers use to form men-
tal models when designing, documenting, im-
plementing, or analyzing software systems. Ar-
tifacts include software components such as
procedures, modules, subsystems, and inter-
faces; dependencies among components such

2Rigi is named after a mountain in central

Switzerland.

as supplier-client, composition, and control-
ow relations; and attributes such as compo-
nent type, interface size, and interconnection
strength. The structure of a system is the orga-
nization and interaction of these artifacts [23].

For a large software system, the reconstruc-
tion of the structural aspects of its architecture
is bene�cial. This process may be termed struc-

tural redocumentation. It involves the identi�-
cation of the software artifacts in the subject
system and the organization of these artifacts
intomore abstract models to reduce complexity.
As a result, the overall structure of the subject
system can be derived and some of its architec-
tural design information can be recaptured.

This process is supported by Rigi, a exible
environment under development at the Univer-
sity of Victoria for discovering and analyzing
the structure of large software systems. It pro-
vides the following desirable components of a
reverse engineering environment:

� a variety of parsers to support the com-
mon programming languages of legacy
software;3

� a repository to store the information ex-
tracted from the source code [24]; and

� an interactive graph editor to manipulate
program representations.

In the Rigi approach, the �rst phase of
the structural redocumentation process is au-
tomatic and language-dependent. It involves
parsing the source code of the subject sys-
tem and storing the extracted artifacts in a
repository. The second phase involves human
interaction and features language-independent
subsystem composition methods that generate
bottom-up, layered hierarchies [25, 26]. Sub-
system composition is the iterative process of
aggregating building blocks such as data types,
procedures, and subsystems into composite
subsystems. The process is guided by parti-
tioning the resource-ow graphs of the source
code via equivalence relations that embody soft-
ware engineering principles concerning module

3Such software is typically written in procedural or

imperative programming languages such as C, COBOL,

Fortran, and PL/I.



interactions such as low coupling and strong co-

hesion [27, 28]. The Rigi project also devised
software quality measures, based on exact inter-
faces and established software engineering prin-
ciples, to evaluate the generated subsystem hi-
erarchies [29, 30, 31].

4 The Rigi project

The main goal of the Rigi project is to inves-
tigate frameworks and environments for pro-
gram understanding, reverse engineering, and
software analysis (all in-the-large). The most
recent results of the project include a reverse
engineering environment consisting of a parsing
subsystem, a repository, and a graph editor [32];
a reverse engineering methodology based on
subsystem composition [25]; a documentation
strategy using views [33, 34, 35]; a structured
hypertext layer [36]; and an extension mecha-
nism via a scripting language [37]. These results
have been applied to several industrial software
systems to validate and evaluate the Rigi ap-
proach to program understanding [38, 39, 40].
Early experience has shown that we can pro-
duce views that are compatible with the mental
models used by the maintainers of the subject
software. Over the past year, we analyzed the
source code of the SQL/DS system as part of
the IBM CAS PU collaborative project.

4.1 Scalability, exibility, and

extensibility

To compete with commercial tools and to in-
spire the current state-of-practice, we need to
train our program understanding tools and
methodologies on large software systems. Tech-
niques that work on toy projects typically do
not scale up. Our current scale objective is to
analyze systems consisting of up to �ve million
lines of code.

Because program understanding has so many
di�erent facets and applications, it is wise to
make our approach as exible as possible for use
in many di�erent domains. Most reverse engi-
neering tools provide a �xed set of extraction,
selection, �ltering, organization, documenta-
tion, and representation techniques. We pro-
vide a scripting language that allows users to

customize, combine, and automate these activ-
ities in novel ways.

4.2 Involving the user

Much work on program understanding still
makes heavy use of human cognitive abilities.
There is a tradeo� between what can be au-
tomated and what should (or must) be left to
humans. The best solution seems to lie in a
combination of the two. Rigi depends heavily
on the experience and domain knowledge of the
software engineer using it; the user makes all
the important decisions. Nevertheless, the pro-
cess is one of synergy as the user also learns and
discovers interesting relationships by exploring
software systems with the Rigi environment.

4.3 Summarizing software

structure

Subsystem composition is the methodology
used in Rigi for generating layered hierarchies
of subsystems, thereby reducing the cognitive
complexity of understanding large software sys-
tems. The Rigi environment supports a parti-
tioning of the resource-ow graph based on es-
tablished software engineering principles. How-
ever, because the user is in charge, the partition
can easily be based on other criteria, such as
business rules, tax laws, message paths, or other
semantic or domain information. Moreover, al-
ternate decompositions may co-exist under the
software structure representation supported by
Rigi.

4.4 Documenting with views

Software engineers rely heavily on internal doc-
umentation to help understand programs. Un-
fortunately, this documentation is typically out-
of-date and software engineers end up refer-
ring to the source code. The Rigi environ-
ment eases the task of redocumenting the sub-
ject software by presenting the results using in-
teractive views. A view is a bundle of visual
and textual frames that contain, for example,
call graphs, overviews, projections, exact inter-
faces, and annotations. A view is a dynamic
snapshot that reects the current reverse engi-
neering state. As such, a view remains up-to-



date. Views can accurately capture co-existing
architectural decompositions, providing many
di�erent perspectives for later inspection.

5 Analyzing SQL/DS

In 1992/93, the �rst author spent a ten-month
sabbatical at IBM CAS. The other two authors
joined him for four months and together we an-
alyzed the source code of SQL/DS using the
Rigi environment.

5.1 Scaling up

SQL/DS contains about three million lines of
PL/AS source code, excluding comments and
blank lines. PL/AS is an internal IBM pro-
gramming language|amix of PL/I and assem-
bly language. When we started, the Rigi system
did not include a PL/AS parser. Moreover, we
had never analyzed a system over 120 thousand
lines of code. Thus, this analysis presented a
real challenge and an excellent test of whether
our methodology and environment would scale
up to the million line range.

Many commercial reverse engineering tools
store entire parse trees in their repositories. For
a multi-million line program, this can require
several hundred megabytes of storage. While
this level of detail may be necessary for tasks
such as data and control-ow analyses or code
optimization and generation, it is not necessary
for understanding the architecture. For pro-
gram understanding, it is important to build
abstractions that emphasize important themes
and suppress irrelevant details; deciding what
to include and what to ignore is still an art.

The Rigi parsing subsystem can extract a va-
riety of software artifacts at various levels of de-
tail. Thus, we can reduce the repository size for
a multi-million line program signi�cantly, mak-
ing a major di�erence when retrieving data in-
teractively. For example, the Rigi database for
SQL/DS is under two megabytes.

Displaying graphs of twenty to �fty thou-
sand vertices and their edges for a multi-million
line program is another problem of scale. For
smaller graphs, it is feasible to update a win-
dow after every event or command. This strat-
egy fails for very large graphs on current display

technology. We needed to tune the user inter-
face, redesigning it to allow the user to batch
sequences of operations and to specify when to
update a window.

5.2 Identifying a target audience

After tuning the Rigi environment to handle
multi-million line programs, we had to identify
a target audience for our program understand-
ing experiments. Both the CAS PU groups
and the SQL/DS development and manage-
ment teams were extremely helpful.

On our �rst try, we summarized the entire
call graph of SQL/DS without considering any
domain knowledge. The result was not encour-
aging because the developers did not recognize
the structures we generated, making it di�cult
to give constructive feedback. On our second
try, we considered the naming conventions used
by the developers. This time, they readily rec-
ognized our subsystem decomposition.

We then focused on one large subsystem of
SQL/DS, the relational data system (RDS),
which contains about one million lines of source
code. With help from a domain expert, RDS
was further decomposed into four main subsys-
tems: (1) run-time access generator; (2) opti-
mizer pass one and two; (3) optimizer path se-
lection; and (4) executive, interpreter, and au-
thorization. Four distinct development teams
were in charge of these subsystems.

5.3 Developer feedback

For the individual subsystems, we proceeded to
analyze their call graphs, summarizing them in
a set of views depicting di�erent architectural
perspectives. We then presented these views to
the development teams with a series of carefully
designed one-hour demonstrations.

A demonstration consisted of four phases:
(1) highlighting the main features of the Rigi
user interface; (2) exhibiting the structural
views of the subsystems pertinent to the partic-
ular development group; (3) allowing the audi-
ence to interact with their software structures
using views as starting points; and (4) allow-
ing individual developers to create new views
on the y to reect and record speci�c domain
knowledge.



While our prepared views did not uncover
the exact mental model of each developer, the
audience readily recognized the presented struc-
tures. There were two main reasons for this.
First, these developers knew their subsystems
intimately. Second, and more importantly, the
views represented the right level of abstrac-
tion. Most satisfying for us was when the in-
dividual developers used their speci�c domain
knowledge to design additional views to reect
their mental model more closely. This was usu-
ally done by emphasizing important compo-
nents and �ltering irrelevant information. In-
variably, after the demonstrations, the develop-
ers came back to try out and document addi-
tional domain knowledge and perspectives.

6 Summary

There will always be old software that needs
to be understood. It is critical for the soft-
ware industry to deal e�ectively with the prob-
lems of software evolution and the understand-
ing of legacy software systems. Since the pri-
mary focus of the industry is changing from
completely new software construction to soft-
ware maintenance and evolution, software en-
gineering research and education must make
some major adjustments. In particular, more
resources should be devoted to software analy-
sis in balance with software construction.

With the focus changing to software evolu-
tion, program understanding tools and method-
ologies that e�ectively aid software engineers in
understanding large and complex software sys-
tems can have a signi�cant impact. This is crit-
ical for keeping up with the varied demands of
the information industry.

The Rigi environment focuses on the archi-
tectural aspects of the subject software under
analysis. The environment provides many ways
to identify, explore, summarize, evaluate, and
represent software structures. More speci�cally,
it supports a reverse engineering methodology
for identifying, building, and documenting lay-
ered subsystem hierarchies. Critical to the us-
ability of the Rigi system is the ability to store
and retrieve views|snapshots of reverse engi-
neering states. The views are used to transfer
information about the abstractions to the soft-

ware engineers.
While the Rigi system is now primarily a re-

verse engineering environment, it was originally
conceived as a design tool. In fact, the system
can be used for both reverse and forward engi-
neering, helping to complete the cycle of soft-
ware evolution.

6.1 Future work

We are currently designing and developing a
more ambitious reverse engineering environ-
ment based on seven years of experience gained
with the Rigi project. This new environment is
supported by an NSERC CRD (Collaborative
Research and Development) grant and involves
three universities (McGill University, the Uni-
versity of Toronto, and the University of Vic-
toria) with IBM as the industrial partner. Col-
laboration is the main theme as the universi-
ties walk a �ne line between pure research and
developing an integrated system for addressing
real-world program understanding problems in
industry.

McGill University will extend the structural
pattern matching capabilities of the Rigi sys-
tem to support syntactic, semantic, functional,
and behavioral search patterns. The University
of Toronto will deliver a more exible and pow-
erful repository for storing software artifacts,
pattern matching rules, and software engineer-
ing knowledge. The University of Victoria will
make the Rigi system more exible, scalable,
extensible, by developing a scripting language
for users to design their own high-level opera-
tions by composing and tailoring existing oper-
ations. IBM will provide an industrial perspec-
tive on architectural issues of the new environ-
ment, characterize real-world re-engineering ap-
plications, and contribute legacy code for test-
ing the new environment. The results of the
project will be disseminated in papers, demon-
strations, and tutorials.

We see re-engineering as the next logical step
after reverse engineering. We are seeking to
apply the results of the NSERC CRD work to
other large legacy systems.



About the authors

Dr. Hausi A. M�uller is an Associate Pro-
fessor of Computer Science at the Univer-
sity of Victoria, where he has been since
1986. From 1979 to 1982 he worked as a
software engineer for Brown Boveri & Cie in
Baden, Switzerland (now called ASEA Brown
Boveri). In 1992/93 he was on sabbati-
cal at the IBM Centre for Advanced Stud-
ies in Toronto working with the program un-
derstanding group. His research interests in-
clude software engineering, software analysis,
program understanding, reverse engineering,
re-engineering, programming-in-the-large, soft-
ware metrics, and computational geometry. His
Internet address is hausi@csr.uvic.ca.

Scott R. Tilley is currently on leave from
IBM Canada Ltd., pursuing a Ph.D. in the
Department of Computer Science at the Uni-
versity of Victoria. His �eld of research
is software engineering in general, and pro-
gram understanding, software maintenance,
and reverse engineering in particular. He
can be reached at the University of Victo-
ria, or at the IBM PRGS Toronto Laboratory,
844 Don Mills Rd., 22/121/844/TOR, North
York, ON, Canada M3C 1V7. His e-mail ad-
dresses are stilley@csr.uvic.caat UVic, and
stilley@vnet.ibm.com or TOROLAB6(TILLEY)
(VNet) at IBM.

Kenny Wong is a Ph.D. student in the De-
partment of Computer Science at the University
of Victoria. His research interests include pro-
gram understanding, user interfaces, and soft-
ware design. He is a member of the ACM,
USENIX, and the Planetary Society. His In-
ternet address is kenw@sanjuan.uvic.ca.

References

[1] D. E. Perry and A. L. Wolf. Foundations for

the study of software architecture. ACM SIG-

SOFT Software Engineering Notes, 17(4):40{

52, October 1992.

[2] CSTB. Scaling up: A research agenda for

software engineering. Communications of the

ACM, 33(9):281{293, March 1990.

[3] T. A. Standish. An essay on software reuse.
IEEE Transactions on Software Engineering,

SE-10(5):494{497, September 1984.

[4] R. Brooks. Towards a theory of the cogni-
tive processes in computer programming. In-

ternational Journal of Man-Machine Studies,
9:737{751, 1977.

[5] R. Brooks. Using a behavioral theory of pro-

gram comprehension in software engineering.

In ICSE'3: Proceedings of the 3rd Interna-

tional Conference on Software Engineering,

(Atlanta, Georgia; May 10-12, 1978), pages

196{201, May 1978.

[6] R. Brooks. Towards a theory of the compre-

hension of computer programs. International

Journal of Man-Machine Studies, 18:543{554,
1983.

[7] R. Arnold. Software Reengineering. IEEE

Computer Society Press, 1993.

[8] C. Sittenauer, M. Olsem, and D. Murdock.
Re-engineering tools report. Technical Report

STSC-Rev B, Software Technology Support

Center; Hill Air Force Base, July 1992.

[9] G. Arango, I. Baxter, P. Freeman, and C. Pid-
geon. TMM: Software maintenance by trans-

formation. IEEE Software, pages 27{39, May

1986.

[10] W. G. Griswold. Program Restructuring as

an Aid to Software Maintenance. PhD thesis,

University of Washington, 1991.

[11] C. Rich and L. M. Wills. Recoginizing a
program's design: A graph-parsing approach.

IEEE Software, 7(1):82{89, January 1990.

[12] P. A. Hausler, M. G. Pleszkoch, R. C. Linger,
and A. R. Hevner. Using function abstraction

to understand program behavior. IEEE Soft-

ware, 7(1):55{63, January 1990.

[13] Y. Chen, M. Nishimoto, and C. Ramamoor-
thy. The C information abstraction system.

IEEE Transactions on Software Engineering,

16(3):325{334, March 1990.

[14] J. E. Grass. Object-oriented design archaeol-

ogy with CIA++. Computing Systems, 5(1):5{

67, Winter 1992.

[15] R. Schwanke, R. Altucher, and M. Plato�. Dis-
covering, visualizing, and controlling software

structure. ACM SIGSOFT Software Engineer-

ing Notes, 14(3):147{150, May 1989. Proceed-
ings of the Fifth International Workshop on

Software Speci�cation and Design.

[16] M. Consens, A. Mendelzon, and A. Ryman.
Visualizing and querying software structures.

In ICSE'14: Proceedings of the 14th Inter-

national Conference on Software Engineer-

ing, (Melbourne, Australia; May 11-15, 1992),

pages 138{156, May 1992.



[17] T. J. Biggersta�, B. G. Mitbander, and
D. Webster. The concept assignment prob-

lem in program undertsanding. In WCRE '93:

Proceedings of the 1993 Working Conference

on Reverse Engineering, (Baltimore, Mary-

land; May 21-23, 1993), pages 27{43. IEEE
Computer Society Press (Order Number 3780-

02), November 1992.

[18] E. Buss and J. Henshaw. Experiences in pro-
gram understanding. Technical Report TR-

74.105, IBM Canada Ltd. Centre for Advanced

Studies, July 1992.

[19] G. Kotik and L. Markosian. Program transfor-

mation: The key to automating software main-
tenance and re-engineering. Technical report,

Reasoning Systems, Inc., 1991.

[20] S. Paul. SCRUPLE: A reengineer's tool for

source code search. In CASCON'92: Proceed-

ings of the 1992 CAS Conference, (Toronto,
Ontario; November 9-12, 1992), pages 329{

345. IBM Canada Ltd., November, 1992.

[21] K. Kontogiannis. Toward program represen-

tation and program understanding using pro-

cess algebras. In CASCON'92: Proceedings

of the 1992 CAS Conference, (Toronto, On-

tario; November 9-12, 1992), pages 299{317.

IBM Canada Ltd., November 1992.

[22] H. A. M�uller. Rigi { A Model for Software Sys-

tem Construction, Integration, and Evolution

based on Module Interface Speci�cations. PhD

thesis, Rice University, August 1986.

[23] H. L. Ossher. A mechanism for specifying
the structure of large, layered systems. In

B. D. Shriver and P. Wegner, editors, Re-

search Directions in Object-Oriented Program-

ming, pages 219{252. MIT Press, 1987.

[24] N. Kiesel, A. Sch�urr, and B. Westfechtel.

GRAS: A graph-oriented database system

for (software) engineering applications. In

CASE '93: The Sixth International Confer-

ence on Computer-Aided Software Engineer-

ing, (Institute of Systems Science, National

University of Singapore, Singapore; July 19-
23, 1993), pages 272{286, July 1993. IEEE

Computer Society Press (Order Number 3480-

02).

[25] H. M�uller and J. Uhl. Composing subsystem

structures using (k,2)-partite graphs. In Pro-

ceedings of the Conference on Software Main-

tenance 1990, (San Diego, California; Novem-

ber 26-29, 1990), pages 12{19, November 1990.
IEEE Computer Society Press (Order Number

2091).

[26] H. A. M�uller, M. A. Orgun, S. R. Tilley, and
J. S. Uhl. A reverse engineering approach to

subsystem structure identi�cation. Journal of
Software Maintenance: Research and Practice,

1993. In press.

[27] G. D. Bergland. A guided tour of program

design methodologies. Computer, 14(10):18{

37, October 1981.

[28] G. Myers. Reliable software through composite
design. Petrocelli/Charter, 1975.

[29] H. M�uller. Verifying software quality criteria

using an interactive graph editor. In Proceed-

ings of the Eighth Annual Paci�c Northwest

Software Quality Conference, (Portland, Ore-

gon; October 29-31, 1990), pages 228{241, Oc-

tober 1990. ACM Order Number 613920.

[30] H. A. M�uller and B. D. Corrie. Measuring
the quality of subsystem structures. Techni-

cal Report DCS-193-IR, University of Victo-

ria, November 1991.

[31] M. A. Orgun, H. A. M�uller, and S. R. Tilley.
Discovering and evaluating subsystem struc-

tures. Technical Report DCS-194-IR, Univer-

sity of Victoria, April 1992.

[32] H. M�uller, S. Tilley, M. Orgun, B. Corrie, and
N. Madhavji. A reverse engineering environ-

ment based on spatial and visual software in-

terconnection models. In SIGSOFT '92: Pro-

ceedings of the Fifth ACM SIGSOFT Sympo-

sium on Software Development Environments,

(Tyson's Corner, Virginia; December 9-11,
1992), pages 88{98, December 1992. In ACM

Software Engineering Notes, 17(5).

[33] S. R. Tilley. Documenting-in-the-large vs.

documenting-in-the-small. In the Proceedings

of CASCON '93, (Toronto, Ontario; October

25-28, 1993), pages 1083{1090, October 1993.

[34] K. Wong. Managing views in a program un-

derstanding tool. In the Proceedings of CAS-

CON '93, (Toronto, Ontario; October 25-28,
1993), pages 244{249, October 1993.

[35] S. R. Tilley, H. A. M�uller, and M. A. Orgun.

Documenting software systems with views. In

Proceedings of SIGDOC '92: The 10th Inter-

national Conference on Systems Documenta-

tion, (Ottawa, Ontario; October 13-16, 1992),

pages 211{219, October 1992. ACM Order

Number 613920.

[36] S. R. Tilley, M. J. Whitney, H. A. M�uller,

and M.-A. D. Storey. Personalized information

structures. SIGDOC '93: The 11th Annual

International Conference on Systems Docu-

mentation, (Waterloo, Ontario; October 5-8,



1993), pages 325{337, October 1993. ACM Or-
der Number 6139330.

[37] S. R. Tilley, H. A. M�uller, M. J. Whitney,

and K. Wong. Domain-retargetable reverse

engineering. CSM '93: The 1993 Interna-

tional Conference on Software Maintenance,

(Montr�eal, Qu�ebec; September 27-30, 1993),

pages 142{151, September 1993. IEEE Com-
puter Society Press (Order Number 4600-02).

[38] H. A. M�uller, J. R. M�ohr, and J. G. McDaniel.
Applying software re-engineering techniques to

health information systems. In T. Timmers

and B. Blums, editors, Software Engineering

in Medical Informatics, pages 91{110. Elsevier

North Holland, 1991.

[39] S. R. Tilley. Management decision support

through reverse engineering technology. In

Proceedings of CASCON '92, (Toronto, On-
tario; November 9-11, 1992), pages 319{328,

November, 1992.

[40] S. R. Tilley and H. A. M�uller. Using vir-

tual subsystems in project management. In
CASE '93: The Sixth International Confer-

ence on Computer-Aided Software Engineer-

ing, (Institute of Systems Science, National
University of Singapore, Singapore; July 19-

23, 1993), pages 144{153, July 1993. IEEE

Computer Society Press (Order Number 3480-
02).


